协整分析
-
北京大学金融时间序列分析讲义第25章: 协整分析与向量误差修正模型
25.1 虚假回归问题 线性回归分析是统计学的最常用的模型之一,但是,如果回归的自变量和因变量都是时间序列,回归就不满足回归分析的基本假定:模型误差项独立同分布。 比如,一元线性回归模型 yt=a+bxt+et, t=1,2,…,n, 需要假定e1,e2,…,et不相关,零均值,方差同为σ2,x1,x2,…,xn非随机,这时最小二乘估计是无偏估计。 当lim…
25.1 虚假回归问题 线性回归分析是统计学的最常用的模型之一,但是,如果回归的自变量和因变量都是时间序列,回归就不满足回归分析的基本假定:模型误差项独立同分布。 比如,一元线性回归模型 yt=a+bxt+et, t=1,2,…,n, 需要假定e1,e2,…,et不相关,零均值,方差同为σ2,x1,x2,…,xn非随机,这时最小二乘估计是无偏估计。 当lim…