人工智能是怎样学习的?人工智能有了吗?

梅金花 美股 63

回复

共30条回复 我来回复
  • 张英伟的头像
    张英伟
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
    人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
    自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
    优点:
    1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
    2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
    3、人工智能可以提高人类认识世界、适应世界的能力。
    缺点:
    1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
    2年前 0条评论
  • 小南的头像
    小南
    这个人很懒,什么都没有留下~
    评论

    人工智能有:

    1、自然语言生成

    利用计算机数据生成文本。目前应用于客户服务、报告生成以及总结商业智能洞察力。代表性厂商包括:Attivio、Cambridge Semantics、Digital Reason、Lucidworks、Narrative Science和SAS。

    2、语音识别

    将人类语音转录和转换成对计算机应用软件来说有用的格式。目前应用于交互式语音应答系统和移动应用领域。代表性厂商包括:NICE、Nuance Communications、OpenText和Verint Systems。

    3、虚拟代理

    弗雷斯特公司声称,“虚拟代理可谓是媒体界目前竞相报道的对象。”从简单的聊天机器人,到可以与人类进行交际的高级系统,不一而足。目前应用于客户服务和支持以及充当智能家居管理器。代表性厂商包括:亚马逊、苹果、Artificial Solutions、Assist AI、Creative Virtual、谷歌、IBM、IPsoft、微软和Satisfi。

    4、机器学习平台

    不仅提供了设计和训练模型,并将模型部署到应用软件、流程及其他机器的计算能力,还提供了算法、应用编程接口(API)、开发工具包和训练工具包。目前应用于一系列广泛的企业应用领域,主要涉及预测或分类。代表性厂商包括:亚马逊、Fractal Analytics、谷歌、H2O.ai、微软、SAS和Skytree。

    针对人工智能优化的硬件:这是专门设计的图形处理单元(GPU)和设备,其架构旨在高效地运行面向人工智能的计算任务。目前主要在深度学习应用领域发挥作用。代表性厂商包括:Alluviate、克雷、谷歌、IBM、英特尔和英伟达。

    5、决策管理

    引擎将规则和逻辑嵌入到人工智能系统,并用于初始的设置/训练和日常的维护和调优。这是一项成熟的技术,应用于一系列广泛的企业应用领域,协助或执行自动决策。代表性厂商包括:Advanced Systems Concepts、Informatica、Maana、Pegasystems和UiPat。

    2年前 0条评论
  • 马傲的头像
    马傲
    这个人很懒,什么都没有留下~
    评论

    要了解人工智能学什么内容,需要首先了解人工智能是什么:

    1、人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的 科技 产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

    2、人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

    那么,人工智能学什么内容呢?

    目前人工智能专业的学习内容主要包括: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。

    需要的基础课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)。

    从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

    想必大家也都知道,现在是一个逐渐智能化的 社会 ,随着 科技 的不断进步,越来越多的智能化产品开始进入到人们的生活中。而近些年,相信大家经常会听到人工智能四个字,人工智能这个行业比较吸引人,同时薪资待遇也较好。因此,很多的大学毕业生毕业之后都想要进入这个行业,但进入这个行业并不容易,如果是零基础的话更是需要学习很多东西才行。那么人工智能入门需要我们学习什么呢?

    需要我们了解的一点是人工智能是一个综合学科,其本身涉及很多方面,比如神经网络、机器识别、机器视觉、机器人等,因此,我们想要学好整个人工智能是很不容易的。

    首先我们需要一定的数学基础,如:高数、线性代数、概率论、统计学等等。很多人可能要问,我学习人工智能为什么要有数学基础呢?二者看似毫不相干,实则不然。线性代数能让我们了解如何将研究对象形象化,概率论能让我们懂得如何描述统计规律,此外还有许多其他数学科目,这些数学基础能让我们在学习人工智能的时候事半功倍。

    然后我们需要的就是对算法的累积,比如人工神经网络、遗传算法等。人工智能的本身还是通过算法对生活中的事物进行计算模拟,最后做出相应操作的一种智能化工具,算法在其中扮演的角色非常重要,可以说是不可或缺的一部分。

    最后需要掌握和学习的就是编程语言,毕竟算法的实现还是需要编程的,推荐学习的有Java以及Python。如果以后想往大数据方向发展,就学习Java,而Python可以说是学习人工智能所必须要掌握的一门编程语言。当然,只掌握一门编程语言是不够的,因为大多数机器人的仿真都是采用的混合编程模式,即采用多种编程软件及语言组合使用,在人工智能方面一般使用的较多的有汇编和C++,此外还有MATLAB、VC++等,总之一句话,编程是必不可少的一项技能,需要我们花费大量时间和精力去掌握。

    人工智能现在发展得越来越快速,这得益于计算机科学的飞速发展。可以预料到,在未来,我们的生活中将随处可见人工智能的产品,而这些产品能为我们的生活带来很大的便利,而人工智能行业的未来发展前景也是十分光明的。所以,选择人工智能行业不会错,但正如文章开头所说,想入行,需要我们下足功夫,全面掌握这个行业所需要的技能才行。

    1.数学基础:

    高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析,博弈论;

    2.算法积累:

    神经网络,支持向量机,贝叶斯,决策树,逻辑回归,线性模型,聚类算法,遗传算法,估计方法,特征工程等;

    3.编程语言:

    至少掌握一门编程语言,越精通越好,毕竟算法的实现还是要编程的;

    4.技术基础:

    计算机原理,操作系统,程序设计语言,分布式系统,算法基础;

    人工智能,即AI(ArtificialIntelligence),是一门包含计算机、控制论、信息论、神经生理学、心理学、语言学等综合学科。

    该概念第一次在达茅斯顿学术会议上提出:人工智能是从计算机应用系统角度出发,研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以及延生人类智能科学。

    核心课程

    ArtificialIntelligence人工智能

    MachineLearning机器学习

    AdvancedOperatingSystems高级操作系统

    AdvancedAlgorithmDesign高级算法设计

    ComputationalComplexity计算复杂性

    MathematicalAnalysis数学分析

    AdvancedComputerGraphics高级计算机图形

    AdvancedComputerNetworks高级计算机网络

    就业方向参考

    (1)搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、图片搜索、视频搜索等都是未来的方向)

    (2)医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。

    (3)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;

    (4)还有一些图像处理方面的人才需求的公司,如威盛、松下、索尼、三星等。

    另外,AI方向的人才都是高 科技 型的,在待遇方面自然相对比较丰厚,所以很这个方向很有发展前途。

    高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。

    需要算法的积累:

    人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

    需要掌握至少一门编程语言:

    比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

    学习人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。

    需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

    需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

    一、 Python基础

    二、 数学基础,其中包含微积分基础、线性代数以及概率统计

    三、 各种框架,如Tensorflow等

    四、 深度学习,其中包含机器学习基础、深度学习基础、卷积神经网络、循环神经网络、生成式对抗神经网络以及深度强化学习。

    五、 商业项目实战,如MTCNN+CENTER LOSS 人脸侦测和人脸识别、YOLO V2 多目标多种类侦测、GLGAN 图像缺失部分补齐以及语言唤醒等。

    熟练掌握C程序设计语言,以及C++、Java、Visual Basic中的一种程序设计语言

    从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

    感谢题主提出的问题,非常荣幸能够做出回答。

    1.人工智能是计算机科学的一个分支,它试图理解智能的本质,并产生一种新的智能机器,它能以类似人类智能的方式做出反应。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统。自人工智能诞生以来,其理论和技术日益成熟,应用领域不断扩大。可以想象,人工智能带来的 科技 产品将成为未来人类智能的“容器”。人工智能可以模拟人类意识和思维的信息过程。人工智能不是人类智能,但它可以像人类一样思考,并可能超越人类智能。

    2.人工智能是一门具有挑战性的科学,从事这项工作的人必须了解计算机知识、心理学和哲学。人工智能是一门非常广泛的科学,它由不同的领域组成,如机器学习、计算机视觉等。一般来说,人工智能研究的主要目标之一是使机器能够胜任一些通常需要人类智能的复杂任务。

    那么,人工智能学到了什么?

    目前,人工智能专业的学习内容主要包括:机器学习、人工智能导论(搜索方法等)。)、图像识别、生物进化理论、自然语言处理、语义网、博弈论等。

    所需的基础课程主要是信号处理、线性代数、微积分和编程(有数据结构基础)。

    从专业的角度来看,机器学习、图像识别和自然语言处理都是大方向,只要你精通其中的一个,你就已经非常强大了。所以不要看太多的内容,有些你只需要掌握,你需要选择一个方向来深入学习。事实上,严格来说,人工智能不难学,但不容易学。它需要一定的数学基础和一段时间的积累。

    2年前 0条评论
  • 辛巴的头像
    辛巴
    这个人很懒,什么都没有留下~
    评论

    当然可以自学。人工智能作为新时代科学飞速发展的产物之一,他的出现极大的便利了人们的生活,提高了人们对生活的体验。作为新兴的产业之一,会有很多小伙伴对其产生浓厚的兴趣,那么今天就让我们来讲讲如何学习人工智能,顺便分享几个学习人工智能的网站以供大家参考。

    首先,人工智能属于计算机的一个分支,他是科技发展的重要产物,同样也是科技强大的体现。如果决定想要学习人工智能,当然不论是学任何东西。第一步就是要先了解你所要学习的具体是什么东西。就拿人工智能来举例,我们要先了解这一领域以及一些相关的基础知识。

    一、人工智能是什么?

    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。当我们在了解了基础的知识后我们还要对其进行下一步定义,就是我们为什么要去学习这项专业也就是我们要拿他去干什么?也就是明确目的性。

    人工智能

    你的目的是什么?是想要做基础的学术研究、比较感兴趣简单的进行了解还是说当成一个具体的就业方向,然后想明白这个问题我们再去根据他来进行有重点地去学习这项专业。像人工智能他的方向可能会有很多例如:机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

    选择相关的带着目的地去进行学习,这样是最有效率的。

    好了,接下来由我来分享几个有关学习人工智能的网站

    网站一:美国人工智能协会(网址: http://www.aaai.org/ )

    美国人工智能协会官网


    作为美国一个非盈利性的科学社团组织,主要致力于让机器产生智慧思考和智能行为的研究。此外,提升公众对人工智能的理解,对人工智能实践人员的教学和培训,为人工智能领域的研究者和投资者提供指导等也都是AAAI的实践内容。

    网站二:智能代理家园(Agentland 网址: http://www.agentland.com/ )


    智能代理家园(官网


    智能代理是人工智能的应用领域之一,在中学人工智能课程教学中,适当介绍智能代理的基本概念和工作原理,并让学生与智能代理实例进行交互操作,能使其不但感受到智能代理的智慧和人性化服务,并且将由对智能代理的亲身体验,而产生对人工智能课程学习的浓厚兴趣。PS:可以当作入门学习的基础。

    好了以上就是对人工智能的基本了解与自学方法,感兴趣的小伙伴可以去学习一下。

    3年前 0条评论
  • 小南的头像
    小南
    这个人很懒,什么都没有留下~
    评论

    人工智能专业学习课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程、人工智能平台与工具、人工智能核心等。

    1人工智能专业主要课程

    1.认知与神经科学课程群

    具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程

    2.人工智能伦理课程群

    具体课程:《人工智能、社会与人文》、《人工智能哲学基础与伦理》

    3.科学和工程课程群

    新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、健康的发展道路上。

    4.先进机器人学课程群

    具体课程:《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》

    5.人工智能平台与工具课程群

    具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》

    6.人工智能核心课程群

    具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》

    3年前 0条评论
  • 张艳的头像
    张艳
    这个人很懒,什么都没有留下~
    评论
    人工智能的学习,简单点来说,就是有3点,做到就相当于学会了人工智能,然后找工作实习就可以了。

    第一点学好数学知识
    人工智能就是计算机科学的一个分支,不过也有借助其他计算机技术的时候,它和计算机的主要组成部分非常相似,差异的地方主要就是形态。它们都是硬件和软件相配合,硬件就是实实在在可以看见,可以触碰到的物品,而软件则是在内部运行的,是一种可以对硬件进行控制,实现“智能”的程序。而软件主要是经由程序设计来完成的。
    程序设计就是一大堆的英文字母,被组合在一起,表达一种独有的信息,不过除了这些还会需要到数学知识,虽然在一些比较基础的或者是简单的程序上用的数学知识很少,不过随着程序越复杂,用到的数学知识就会越多,比如逻辑思维、数据结构、算法等等。
    第二点学习编程语言
    人工智能编程语言有一个共同的特点,那就是这些语言都是面向所要解决的问题、结合知识表示、完全脱离当代计算机的诺依曼结构特性而独立设计的;它们又处于比面向过程的高级编程语言更高的抽象层次。因此,用这些语言编写的程序,在现代计算机环境中,无论是解释或编译执行,往往效率很低。尤其当程序规模很大、很复杂时,将浪费大量系统资源(主要指处理机占用时间和存储空间占用量),使系统性能下降到难以容忍的地步。
    第三点实战
    理论知识只是理论知识和实际运用是两回事,拥有再好的理论,不能实现在现实中,也是没有用的,所以基础知识学完后就需要进行实习了,把学来的知识在实际的案例中慢慢吸收一遍,会得到不一样的理解。

    3年前 0条评论
  • 果果的头像
    果果
    这个人很懒,什么都没有留下~
    评论
    从基础学科来分析 人工智能主要得学习数学,计算机,算法,心理学,统计学,概率学。当然这些主要是基础的。要想深造还得涉猎更多的垂直行业,比如社会学领域的人工智能就离不开社科,经济学领域的人工智能离不开财经等等。
    3年前 0条评论
  • yanlang的头像
    yanlang
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
    人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。[1]2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
    工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
    关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
    人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。
    尼尔逊教授对人工智能下了这样一个定义:“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而另一个美国麻省理工学院的温斯顿教授认为:“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”这些说法反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
    人工智能是计算机学科的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
    人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。
    3年前 0条评论
  • 大魏的头像
    大魏
    这个人很懒,什么都没有留下~
    评论

    人工智能专业学习什么?从课程体系结构来看,主要分成四大部分:

    第一部分是基础学科部分,主要涉及到数学和物理相关课程;第二部分是计算机基础课程,涉及到编程语言、操作系统、算法设计等课程;第三部分是人工智能基础课程,涉及到人工智能基础、机器学习、控制学基础、神经科学、语言学基础等内容;第四部分涉及到人工智能平台相关知识。

    3年前 0条评论
  • Guo的头像
    Guo
    这个人很懒,什么都没有留下~
    评论
    作为一名计算机专业的教育工作者,我来回答一下这个问题。
    从大的技术层面来看,人工智能的知识体系主要涉及到六个大的学习方向,包括自然语言处理、计算机视觉、机器学习(深度学习)、自动推理、知识表示和机器人学,这些方向各有体系且联系紧密。
    人工智能是典型的交叉学科,涉及到数学、哲学、控制学、计算机、经济学、神经学和语言学等学科,同时学习人工智能还需要具有一定的实验环境,对于数据、算力和算法都有一定的要求,所以当前人工智能领域的人才培养依然以研究生教育为主。
    对于初学者来说,如果想入门人工智能领域,可以从机器学习入手,一方面机器学习的知识体系相对比较容易理解,另一方面机器学习的应用场景也比较多,机器学习也是大数据分析的两种常见方式之一。
    机器学习的步骤涉及到数据收集、算法设计、算法实现、算法训练、算法验证和算法应用,这个过程需要学习编程语言、数据整理和算法设计这三大块内容。编程语言可以从Python语言开始学起,目前Python语言在机器学习领域的应用也比较普遍,有大量的案例可以参考。在学习的初期完全可以采用一些公开的数据集,这样也方便做结果对比,而算法可以从基础的常见算法入手,比如决策树、朴素贝叶斯、支持向量机等等。
    学习机器学习的过程还可以借助于当前的人工智能平台来完成,一部分大数据(云计算)平台也提供了大量机器学习方面的实践环境,基于这些平台来完成机器学习实验会更方便一些,而且也会积累一定的实践经验。
    3年前 0条评论
  • 小鱼儿的头像
    小鱼儿
    这个人很懒,什么都没有留下~
    评论

    人工智能主要学:人工智能、社会与人文、人工智能哲学基础与伦理、先进机器人控制、认知机器人、,机器人规划与学习、仿生机器人、群体智能与自主系统无人驾驶技术与系统实现游戏设计与开发计算机图形学虚拟现实与增强现实、人工智能的现代方法I、问题表达与求解、人工智能的现代方法II、机器学习、自然语言处理、计算机视觉等。

    拓展资料

     人工智能专业一般指人工智能(中国普通高等学校本科专业)。
    人工智能是中国普通高等学校本科专业。

    人工智能,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的`实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

    人工智能、社会与人文、人工智能哲学基础与伦理、先进机器人控制、认知机器人、,机器人规划与学习、仿生机器人、群体智能与自主系统无人驾驶技术与系统实现游戏设计与开发计算机图形学虚拟现实与增强现实、人工智能的现代方法I、问题表达与求解、人工智能的现代方法II、机器学习、自然语言处理、计算机视觉等。

      人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

    3年前 0条评论
  • suansuanmao的头像
    suansuanmao
    这个人很懒,什么都没有留下~
    评论
    人工智能需要学习的内容有很多,而且python是人工智能首选的语言,想要从事相关工作,可以学习python,以下是详细的学习内容:
    阶段一:Python开发基础
    Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
    阶段二:Python高级编程和数据库开发
    Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
    阶段三:前端开发
    Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
    阶段四:WEB框架开发
    Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
    阶段五:爬虫开发
    Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
    阶段六:全栈项目实战
    Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
    阶段七:数据分析
    Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
    阶段八:人工智能
    Python全栈开发与人工智能之人工智能学习内容包括:机器学习、图像识别、无人机开发、无人驾驶等。
    阶段九:自动化运维&开发
    Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
    阶段十:高并发语言GO开发
    Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
    4年前 0条评论
  • suansuanmao的头像
    suansuanmao
    这个人很懒,什么都没有留下~
    评论

    影片讲述21世纪中期,人类的科学技术已经达到了相当高的水平,一个小机器人为了寻找养母,为了缩短机器人和人类差距而奋斗的故事。

    4年前 0条评论
  • 赫赫的头像
    赫赫
    这个人很懒,什么都没有留下~
    评论
    人工智能领域方面的专家对人工智能做了不同的定义,但目前人工智能的概还没有统一,他们定义有一些共同点可以归纳为: 依赖的硬件为计算机(注:这个计算机不单单指我们日常用的笔记本电脑)自身有特定的算法可以通过经验学习提高自己的不足
    4年前 0条评论
  • 苑利平的头像
    苑利平
    这个人很懒,什么都没有留下~
    评论
    人工智能虽然属于一门高精尖学科,但它的研究对象是以计算机为主,融合社会科学和自然科学的内容。它的研究方向主要分为两类:一类是以算法为主,另一类则偏向机械自动化方向。

    目前国内高校本科生阶段的专业目录中并没有设置人工智能专业,在研究生阶段才开设相应的研究方向。但是本科阶段有很多专业是与人工智能相关的,比如计算机类、电子信息类、自动化类、数学类。

    1、计算机类(0809-0812)

    计算机科学与技术、软件工程、网络工程、信息安全、物联网工程、数字媒体技术、智能科学与技术、空间信息与数字技术、电子与计算机工程电子信息类:通信工程、信息工程、水声工程、电子信息工程、广播电视工程、医学信息工程、微电子科学与工程、光电信息科学与工程、电子科学与技术、电磁场与无线技术、电子信息科学与技术、电波传播与天线、电信工程及管理、应用电子技术教育、集成电路设计与集成系统

    2、自动化类(080602)

    自动化、轨道交通信号与控制

    3、数学类(0701)

    数学与应用数学、 信息与计算科学、 数理基础科学、数据科学与大数据技术

    备注:括号内的是相关专业的学科代码。

    可以报考的学校有哪些?

    目前国内有 3 所学校专门设立了人工智能技术学院:

    1、中国科学院大学人工智能技术学院

    2017 年 5 月,中国科学院大学成立国内首家成立人工智能技术学院的高校,这是我国人工智能技术领域首个全面开展教学和科研工作的新型学院。

    中国科学院大学的人工智能技术学院将由中科院自动化所担任主承办单位,联合计算所、沈阳自动化所、软件所、声学所、深圳先进技术研究院、数学与系统科学研究院、重庆绿色智能技术研究院等为共同承担单位,建立创新型人才培养与技术应用型人才培养互补,专业化培育与定制型培育结合的教育科研体系。

    2、西安电子科技大学人工智能学院

    西安电子科技大学人工智能学院于 2017 年 11 月揭牌成立。该学院系教育部直属高校首个致力于人工智能领域高端人才培养、创新成果研发和高层次团队培育的实体性学院。

    据介绍,在人才培养方面,西电新成立的人工智能学院将以智能科学与技术等本科专业为主体进行培养,未来还将成立「图灵实验班」,探索人工智能领域拔尖创新人才培养路径。科学研究方面,依托学校「智能感知与计算国际联合研究中心」、「智能感知与图像理解实验室」教育部重点实验室、「智能感知与计算国际合作联合实验室」等研究平台,将面向复杂影像感知与人工智能、类脑智能与深度学习、视频感知与光电智能系统、数据科学与大数据关键技术、智能控制与机器人系统和高性能智能计算等开展科学研究。

    4年前 0条评论
  • 棉花糖的头像
    棉花糖
    这个人很懒,什么都没有留下~
    评论

    之前看到一本书《奇点临近》,书中讲到,当有一天计算机会足够强大,以至于它的智能也可以匹敌人类,当计算机智能超过人的时候,整个社会会发生非常奇妙的变化。

            人工智能时代真的来临了吗?实际上人工智能领域中的机器学习在广告,搜索,feed等各个领域均有大规模运用,此刻的概念和传统的机器学习有啥不同?个人理解有以下三点:

    1.数据的爆发式增长,得益于手机、智能硬件等设备的普及,如今人们生产的数据规模较之前的pc时代有大规模的提升,越来越多数据的处理、挖掘和理解需要更智能的技术,这就是为什么硅谷出现大量的AI公司去处理各特定领域的问题;此外,做机器学习的人应该知道,可处理的数据越丰富,一定程度上机器学习的任务运作的越好,这也推动了机器学习的发展。

    2.机器学习处理技术的提升,较之传统机器学习模型(浅层模型),深度学习近几年得到大规模运用。一方面是深度学习较传统的机器学习有较好的处理效果,尤其在图像、语音、视频等领域;其次是得益于硬件技术的发展和训练方式的提升,原本几乎不可能完成(训练时间过长)的深度学习的训练得以实施,比如目前对图像处理的CNN是Yann LeCun于1998提出,但是因为技术手段因素一直到最近几年才被广泛应用。

    3.深度学习平台化以及云化的发展,记得两年多前,曾经有朋友说想试试dnn,但门槛极高,如今如paddle,tensorflow,caffe等开源平台可以让大家方便的进行深度学习任务(如果不用gpu加速或者并行计算,处理传统的文本任务也够了)。这也是为什么很多小公司可以号称自己使用了深度学习技术的原因,而这个趋势会随着未来开源平台的完善更加深入。此外,越来越多的云计算平台开始考虑集成机器学习,包括深度学习进入云服务,下一代的云服务会更好的支持机器学习任务,大家接入的成本会更低,也会促进AI应用的大规模发展。

            综上,正是因为大量的数据依赖AI技术,AI的自身发展和接入成本会更低,可预计的未来将会出现大量的AI应用。才会此刻出现人工智能时代到来的说法。

    5年前 0条评论
  • A米的头像
    A米
    这个人很懒,什么都没有留下~
    评论
    人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
    5年前 0条评论
  • 刘雨菥的头像
    刘雨菥
    这个人很懒,什么都没有留下~
    评论
    人工智能还处于发展阶段,还有很长一段路要走。将2017年称人工智能元年,应该不为过,毕竟各行各业都在积极将产业与人工智能相结合,而《新一代人工智能发展规划》(下文简称《规划》)的出台则让其在未来几年都会成为行业发展的重要组成部分。也因此,日前,科技部在北京召开新一代人工智能发展规划暨重大科技项目启动会,意在全面推进《规划》和重大科技项目启动实施。
    其实,追溯人工智能这个概念,可以发现,它并不是个新兴事物,上个世纪70年代时,已经有明确定义,只是受限于技术,并未得到长远发展,直到近年随着互联网等技术得到了大力提升,人工智能才重新回到公众的视野。
    据悉,我国准备到2020年,人工智能总体技术和应用与世界先进水平同步,人工智能产业成为新的重要经济增长点,人工智能技术应用成为改善民生的新途径;到2025年,部分技术与应用达到世界领先水平,人工智能成为带动我国产业升级和经济转型的主要动力;到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心,智能经济、智能社会取得明显成效。
    人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。
    5年前 0条评论
  • Guo的头像
    Guo
    这个人很懒,什么都没有留下~
    评论
    学习AI的大致步骤:
    (1)了解人工智能的一些背景知识;
    (2)补充数学或编程知识;
    (3)熟悉机器学习工具库;
    (4)系统的学习AI知识;
    (5)动手去做一些AI应用;
    1 了解人工智能的背景知识
    人工智能里面的概念很多,比如机器学习、深度学习、神经网络等等,使得初学者觉得人工智能很神秘,难以理解。刚开始学习的时候,知道这些名词大致的意思就行了,不用太深究,学习过一段时间,自然也就清楚这些概念具体代表什么了。
    人工智能是交叉学科,其中数学和计算机编程是学习人工智能最重要的两个方面。这些在“知云AI专栏”之前的文章“认识人工智能”,也为大家介绍过,没阅读过的同学可以去看一下。
    下图为人工智能学习的一般路线:
    2补充数学或编程知识
    对于已经毕业的工程师来说,在系统学习AI之前,一般要补充一些数学或者编程方面的知识。如果你的数学和编程比较好,那么学习人工智能会轻松很多。
    很多同学一提到数学就害怕,不过,学习人工智能,数学可以说是绕不过去的。在入门的阶段并不需要太高深的数学,主要是高等数学、线性代数和概率论,也就是说,大一大二学的数学知识已经是完全够用了。如果想要从事机器学习工程师的工作,或者搞人工智能的研究,那么应该多去学习数学知识,数学好将会是工作中的一大优势。
    Python是在机器学习领域非常受欢迎,可以说是使用最多的一门编程语言,因此Python编程也是需要掌握的。在众多的编程语言中,Python是比较容易学习和使用的编程语言,学好Python也会受益很多。
    3 熟悉机器学习工具库
    现在人们实现人工智能,主要是基于一些机器学习的工具库的,比如TensorFlow、PyTorch等等。
    在这里推荐大家学习PyTorch。PyTorch非常的受欢迎,是容易使用的机器学习工具库,有人这样评价PyTorch“也说不出来怎么好,但是使用起来就是很舒服”。
    刚开始学习人工智能的时候,可以先运行一下工具库官网的示例,比如MNIST手写体识别等。这样会对人工智能有一个感性的认识,消除最初的陌生感。然后可以看看里面的代码,你会发现,其实神经网络的程序并不复杂,但是会对神经网络的原理和训练有很多的疑问。这是一件好事,因为带着问题去学习,会更有成效。
    4 系统的学习人工智能
    这里的人工智能主要指机器学习,因为目前人工智能主要是通过机器学习的方式来实现的。
    机器学习知识主要有三大块:
    (1)传统机器学习算法,比如决策树、随机森林、SVM等,这些称作是传统机器学习算法,是相对于深度学习而言的。
    (2)深度学习,指的就是深度神经网络,可以说是目前最重要最核心的人工智能知识。
    (3)强化学习,源于控制论,有时候也翻译成增强学习。深度学习可以和强化学习相结合使用,形成深度强化学习。
    在这里需要知道的是深度学习并不难学,对于一些工科的研究生,一般只需要几周就可以上手,并可以训练一些实际应用中的神经网络。但是想要对深入学习有深入理解不是容易的事情,一般需要几个月的时间。
    传统机器学习算法的种类非常多,有些算法会有非常多的数学公式,比如SVM等。这些算法并不好学,因此可以先学习深度学习,然后再慢慢的补充这些传统算法。
    强化学习是比较有难度的,一般需要持续学习两三个月,才能有所领悟。
    5 动手去做一些AI应用
    学习过几周的深度学习之后,就可以动手尝试去做一些AI应用了,比如图像识别,风格迁移,文本诗词生成等等。边实践边学习效果会好很多,也会逐渐的加深对神经网络的理解。
    5年前 0条评论
  • 天街刘旭的头像
    天街刘旭
    这个人很懒,什么都没有留下~
    评论

    人工智能专业主要学的是核心课程包括:数学、统计、计算机、自动化等,这些学科都属于人工智能专业的核心课程。

    5年前 0条评论
点击加载更多
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部