量化交易算人工智能吗?人工智能算法有哪些?
-
工智能计算机科支企图解智能实质并产种新能类智能相似式做反应智能机器该领域研究包括机器、语言识别、图像识别、自语言处理专家系统等。
人工智能(Artificial_Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
说起人工智能我们大家都很熟悉,各种人工智能概念,AI概念层不出穷,仔细想来无外乎智能音箱、智能打印机、智能售卖机等等诸如此类似乎没多少“智能”,和我们脑海中的“AI印象”,如:终结者、机器人、阿尔法狗、自动驾驶等技术大相径庭。
目前,普遍认为人工智能的研究始于1956年达特茅斯会议,早期人工智能研究中,如何定义人工智能是个喋喋不休的问题,但基调始终是:像人一样决策、像人一样行动、理性的决策、理性的行动等研究方向。2年前 -
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。2年前 -
同意上一个回答,我来补充一下
决策树
决策树是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。
随机森林
在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。
逻辑回归
逻辑回归,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。
Adaboost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。
其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。
朴素贝叶斯
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。最为广泛的两种分类模型是决策树模型和朴素贝叶斯模型。
和决策树模型相比,朴素贝叶斯分类器发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,朴素贝叶斯分类器模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。
K近邻
所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
SVM
使用铰链损失函数计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分类器。
神经网络
人工神经网络是生物神经网络在某种简化意义下的技术复现,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。
3年前 -
有四种方法如下:
1、监督式学习。
在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。
在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。
2、强化学习。
在这种学习模式下,输入数据作为对模型的反馈,不像监督模型那样,输入数据仅仅是作为一个检查模型对错的方式,在强化学习下,输入数据直接反馈到模型,模型必须对此立刻作出调整。
3、非监督式学习。
在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。
4、半监督式学习。
在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。
应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。
3年前 -
算法就分很多类,这里拿“合一”来作为介绍,为了应用推理规则(比如取式假言推理),推理系统必须能够判断两个表达式何时相同,也就是这两个表达式何时匹配。在命题演算中,这是显而易见的:两个表达式是匹配的当且仅当它们在语句构成上相同。在谓词演算中,表达式中变量的存在使匹配两个语句的过程变得复杂。全称例化允许用定义域中的项来替换全称量化变量。这需要一个决策处理来判断是否可以使变量替换产生的两个或更多个表达式相同〈通常是为了应用推理规则)。合一是一种判断什么样的替换可以使产生的两个谓词演算表达式匹配的算法。我们在上-一节中已经看到了这个过程,VX( man(X)=mortal(X))中的×替换成了man( socrates)中的 soc-rates。合一和像假言推理这样的推理规则允许我们对一系列逻辑断言做出推理。为了做到这一点,必须把逻辑数据库表示为合适的形式。这种形式的一个根本特征是要求所有的变量都是全称量化的。这样便允许在计算替代时有完全的自由度。存在量化变量可以从数据库语句中消除,方法是用使这个语句为真的常量来替代它们。如,可以把3× parent( X, tom)替代为表达式parent( bob, tom)或parent( mary , tom) ,假定在当前解释下bob和 mary是tom的双亲。消除存在量化变量的处理会因这些替换的值可能依赖于表达式中的其他变量而变得复杂。
3年前 - 推荐教程:Python教程
人工智能英文简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能算法也被称之为软计算 ,它是人们受自然界规律的启迪,根据其原理模拟求解问题的算法。

目前的人工智能算法有人工神经网络遗传算法、模拟退火算法、群集智能蚁群算法和例子群算等等。

随着人工智能算法的不断优化,可以不仅可以帮助我们提高工作效率、改善我们的生活水平,同时也能为我们在庞大的现代信息资源中迅速的找到我们所需要的信息。
3年前 -
模糊数学、神经网络、小波变换、遗传算法、人工免疫系统、参数优化、粒子群算法,等等,简单应用,有高等数学知识即可。13年前
-
编程与推理没有关系,编程的智能建立在“是非”之上,以中断判断为基础。推箱子有很多种判断,比如2*2*2……结果会特别多,而编程只是控制其中某一步,这样每一步都有2种情况,相乘后,软件就会有很多种通过方法,太多了。比如棋类软件,我们只要控制某些局部,这些局部组成了“人工智能”,而局部本身是“非智能”的,这么说明白?
即使是人脑的智能,本质上还是电信号的中断处理,处理的速度“即人的聪明”,与人脑中数据库的优化与数据量有关,也就是人脑的智能,其实是机械电子搜索匹配过程……15年前
