人工智能要学编程吗?怎么学人工智能编程?
-
人工智能需要学的有高等数学,线性代数,概率论数理统计等。
首先需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析,其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少,人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。人工智能专业的主要领域是:机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。
人工智能专业发展历史:
2018年4月3日,中国高校人工智能人才国际培养计划启动仪式在北京大学举行。教育部将进一步完善中国高校人工智能学科体系,在研究设立人工智能专业,推动人工智能一级学科建设。教育部在研究制定《高等学校引领人工智能创新行动计划》,通过科教融合、学科交叉、进一步提升高校人工智能科技创新能力和人才培养能力。
2018年4月8日,西安交通大学人工智能拔尖人才培养试验班宣告成立,将于2018年面向全国招生。每年计划招生40人左右,高考招生选拔15人左右,校内新生选拔15人左右,少年班再选拔10人左右。
2年前 -
1、数学基础。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。这一模块覆盖了人工智能必备的数学基础知识,包括线性代数、概率论、最优化方法等。
2、机器学习。机器学习的作用是从数据中习得学习算法,进而解决实际的应用问题,是人工智能的核心内容之一。这一模块覆盖了机器学习中的主要方法,包括线性回归、决策树、支持向量机、聚类等。
3、人工神经网络。作为机器学习的一个分支,神经网络将认知科学引入机器学习中,以模拟生物神经系统对真实世界的交互反应,并取得了良好的效果。这一模块覆盖了神经网络中的基本概念,包括多层神经网络、前馈与反向传播、自组织神经网络等。
4、深度学习。简而言之,深度学习就是包含多个中间层的神经网络,数据爆炸和计算力飙升推动了深度学习的崛起。这一模块覆盖了深度学习的概念与实现,包括深度前馈网络、深度学习中的正则化、自编码器等。
5、神经网络实例。在深度学习框架下,一些神经网络已经被用于各种应用场景,并取得了不俗的效果。这一模块覆盖了几种神经网络实例,包括深度信念网络、卷积神经网络、循环神经网络等。
6、深度学习之外的人工智能。深度学习既有优点也有局限,其他方向的人工智能研究正是有益的补充。这一模块覆盖了与深度学习无关的典型学习方法,包括概率图模型、集群智能、迁移学习、知识图谱等。
7、应用场景。除了代替人类执行重复性的劳动,在诸多实际问题的处理中,人工智能也提供了有意义的尝试。这一模块覆盖了人工智能技术在几类实际任务中的应用,包括计算机视觉、语音处理、对话系统等。2年前 -
当前人工智能和软件开发都是不错的学习方向,到了大二的学生可以根据自身的能力特点和兴趣爱好来进行选择。如果数学基础比较扎实,同时又比较喜欢程序设计,那么可以重点考虑一下人工智能方向。
人工智能当前受到了广泛的关注,随着人工智能平台陆续开始落地应用,未来不仅IT互联网行业需要大量的人工智能专业人才,传统行业领域也会需要很多人工智能人才,以促进行业领域的创新和发展。在5G通信和新基建计划的推动下,相信人工智能未来的发展前景还是非常值得期待的。
本科阶段选择人工智能方向会有相对比较大的学习压力,需要学习的内容也会相对比较多,同时还需要重视动手实践能力的提升,比如基于人工智能平台进行行业应用场景开发等等。目前人工智能平台多以计算机视觉和自然语言处理为依托来进行技术生态扩展,所以本科阶段也应该重点关注一下这两个领域的相关知识,尤其是开发知识。
长期以来,人工智能领域的人才培养一直以研究生教育为主,随着人工智能技术逐渐从研发向应用过渡,行业领域会释放出大量的应用型人才的需求,不仅需要高端应用型人才(专硕),同时也需要大量具有初级研发能力的普通应用型人才,所以未来本科生学习人工智能方向,也会有一个比较好的就业预期。
从专业方向来看,计算机网络、嵌入式和人工智能这三个方向都是不错的选择,各自的发展空间也都比较大,学生在选择具体方向的时候,要考虑到自身的知识结构、能力特点和兴趣爱好,另外还需要考虑到不同方向的行业现状,以及学校自身的教育资源分配情况。
从技术的发展趋势来看,人工智能方向是当前的热点,在工业互联网、5G和新基建计划的推动下,人工智能领域会逐渐释放出大量的发展机会,而且当前人工智能领域的人才缺口也相对比较大,所以选择人工智能方向会有一个比较好的发展前景。但是,长期以来人工智能领域的人才培养都是以研究生教育为主,而且人工智能本身的知识体系非常庞大,所以本科生选择人工智能方向还是具有一定挑战性的。2年前 -
人工智能需要学的课程如下:
人工智能专业主要需要学:《人工智能、社会与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》、《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》。
就业前景
前景很好,中国正在产业升级,工业机器人和人工智能方面都会是强烈的热点,而且正好是在3~5年以后的时间。难度,肯定高,要求你有创新的思维能力,高数中的微积分、数列等等必须得非常好,软件编程(基础的应用最广泛的语言:C/C++)必须得很好,微电子(数字电路、低频高频模拟电路、最主要的是嵌入式的编程能力)得学得很好。
还要有一定的机械设计能力(空间思维能力很重要)。这样的话,你就是人才,你就是中国未来5年以后急需的人工智能领域的人才。一门深入地钻研下去,你就是这个领域的专家甚至大师。
网友二:人工智能以计算机技术为基础,依赖算法和模仿人脑神经元结构,在大数据的统计下,利用高级计算机语言Python等x86或Linux架构系统下编写具有深度学习的,依赖图形海量AI的GPU组和CPU等架构上高精度传感器的智能的类似人脑思维的电子人工智慧。
2年前 -
人工智能专业主要以《人工智能、社会与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、《机器人规划与学习》、《仿生机器人》;
《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》、《问题表达与求解》、《人工智能的现代方法II》、《机器学习、自然语言处理、计算机视觉》等课程为主。
人工智能专业的培养方向
(一)人工智能基础理论研究相关方向,如:人工智能模型与理论、人工智能数学基础、优化理论学习方法、机器学习理论、脑科学及类脑智能等。
(二)人工智能共性技术相关研究方向,如:智能感知技术、计算机视觉、自然语言理解、智能控制与决策等。
(三)人工智能支撑技术研究方向,如:人工智能架构与系统、人工智能开发工具、人工智能框架和智能芯片等。
(四)人工智能应用技术相关研究方向,包括但不限于:智能制造、机器人、无人驾驶、智能网联汽车、智慧交通、智慧医疗、机器翻译和科学计算等,充分发挥人工智能对各个学科或领域的赋能作用,形成特色培养方向。
(五)人工智能与智能社会治理相关研究方向,如基于人工智能技术属性与社会属性紧密结合特征的人工智能伦理与治理,以及可信安全、公平性和隐私保护等方面相关技术方向。
以上内容参考 百度百科-人工智能
2年前 -
人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。
在1955的时候,香农与人一起开发了The Logic TheoriST程序,它是一种采用树形结构的程序,在程序运行时,它在树中搜索,寻找与可能答案最接近的树的分枝进行探索,以得到正确的答案。
这个程序在人工智能的历史上可以说是有重要地位的,它在学术上和社会上带来的巨大的影响,以至于我们所采用的思想方法有许多还是来自于这个50年代的程序。
1956年,作为人工智能领域另一位著名科学家的麦卡希召集了一次会议来讨论人工智能未来的发展方向。从那时起,人工智能的名字才正式确立,这次会议在人工智能历史上不是巨大的成功。
但是这次会议给人工智能奠基人相互交流的机会,并为未来人工智能的发展起了铺垫的作用。在此以后,人工智能的重点开始变为建立实用的能够自行解决问题的系统,并要求系统有自学习能力。
在1957年,香农和另一些人又开发了一个程序称为General Problem Solver(GPS),它对Wiener的反馈理论有一个扩展,并能够解决一些比较普遍的问题。
别的科学家在努力开发系统时,右图这位科学家作出了一项重大的贡献,他创建了表处理语言LISP,直到许多人工智能程序还在使用这种语言,它几乎成了人工智能的代名词,到了今天,LISP仍然在发展。
扩展资料:
一、信息技术简介
信息技术(Information Technology,缩写IT),是主要用于管理和处理信息所采用的各种技术的总称。它主要是应用计算机科学和通信技术来设计、开发、安装和实施信息系统及应用软件。
它也常被称为信息和通信技术(Information and Communications Technology, ICT)。主要包括传感技术、计算机与智能技术、通信技术和控制技术。
二、社会功能
信息技术在全球的广泛使用,不仅深刻地影响着经济结构与经济效率,而且作为先进生产力的代表,对社会文化和精神文明产生着深刻的影响。
信息技术已引起传统教育方式发生着深刻变化。计算机仿真技术、多媒体技术、虚拟现实技术和远程教育技术以及信息载体的多样性,使学习者可以克服时空障碍,更加主动地安排自己的学习时间和速度。
特别是借助于互联网的远程教育,将开辟出通达全球的知识传播通道,实现不同地区的学习者、传授者之间的互相对话和交流,不仅可望大大提高教育的效率,而且给学习者提供一个宽松的内容丰富的学习环境。远程教育的发展将在传统的教育领域引发一场革命,并促使人类知识水平的普遍提高。
互联网已经成为科学研究和技术开发不可缺少的工具。互联网拥有的600多个大型图书馆、400多个文献库和100万个信息源,成为科研人员可以随时进入并从中获取最新科技动态的信息宝库,大大节约查阅文献的时间和费用。
信息网络为各种思想文化的传播,提供了更加便捷的渠道,大量的信息通过网络渗入到社会各个角落,成为当今文化传播的重要手段。
参考资料:
百度百科-信息技术
2年前 -
人工智能专业是一个比较好学的专业,课程难度不大,同时该专业还是一个很不错的专业,前景很好,中国正在产业升级,工业机器人和人工智能方面会是强烈的热点,以后很多东西都是人工智能了。我是桂林电子科技大学18级学生,我有一个认识的学弟就是人工智能专业的,我们学校是2020年才有人工智能这个专业的,下面我来具体介绍一下这个专业吧。01——个人感受我认为人工智能是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能这个专业前景非常广阔,所以说这个专业是很好的选择。还有,我觉得这个专业适合所有对人工智能有兴趣的同学去选择,该专业的课程难度不是很高,不过也不能随便摆烂,也得认真去学。
说到学习这个专业的首选那肯定是清华大学,其次是北京大学、国防科技大学、浙江大学和哈尔滨工业大学等。如果你真的对人工智能有着浓厚的兴趣,那么选择这个专业不会有错的。
02——专业介绍人工智能是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学,也是计算机科学的一个分支。它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。03——主修课程人工智能专业的核心课程有:专业导论、人工智能数学基础、线性代数 A、概率论与数理统计、程序设计与问题求解、电路与电子技术基础、面向对象编程、算法及数据结构、人工智能基础、数据科学导论、计算机组成原理、机器学习、信息论、机器人学概论、数字信号处理、模式识别、自然语言处理、现代控制理论等。我们在学习中需要注意的是:要认真学习智能的基础理论、基本方法和基本技能,掌握相关应用领域基础知识。还需要具有系统的计算思维和数据思维,具有创新创业意识和国际视野,具有良好的社会人文素养、职业道德和团队精神。04——就业前景人工智能专业就业方向主要包括科研机构(机器人研究所等)、软硬件开发人员、高校讲师等。在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点。人工智能目前是一个快速增长的领域,人才需求量大,相比于其他技术岗位,竞争度偏低,薪资相对较高,因此,趁着这个机遇,人工智能专业是一个很好的选择。05——小结人工智能这个专业不难学,但是大家也不能太随意,不然也会挂科的哟。并且人工智能专业相当的不错,未来必定是一个人工智能的世界,掌握了人工智能技术,就是一笔不可描述的财富。人工智能不仅能带动国家的发展,还能够方便世界上所有的人,所以,相信自己的感觉,对人工智能感兴趣的同学,来选择这个专业肯定没错的。2年前 -
人工智能学起来还是蛮有挑战的,不是那么容易!
人工智能相关专业比计算机专业要更有发展前景,人工智能,是一个以计算机科学为基础,由计算机、数学、哲学等多学科交叉融合的交叉学科。
近些年才刚刚在国内高校设立人工智能学院,开设的人工智能相关专业比如:智能科学与技术、数据科学与大数据专业。具体学习的课程各个学校会有不同,大概包括这些课程3个方向:
-
Ø 计算机相关:Linux操作系统、Java语言编程、数据库原理与应用、数据结构、数据挖掘与数据分析
-
Ø 数学及统计类课程:高等数学、线性代数、概率论、数理统计
-
Ø AI相关:机器人、语言识别、图像识别、自然语言处理、人脸识别,语音识别,智能算法推荐、深度学习、知识图谱、计算机视觉
就业前景如何呢?
数据科学与大数据技术与人工智能专业不仅有着明朗的就业前景,在就业岗位的薪资待遇上有着无法比拟的就业优势。基本薪酬,薪资水平、就业满意度都优于全国平均水平的专业。
2年前 -
-
人工智能当然不好学,因为非常高科技,但是如果学出来以后不但好就业而且还会有非常好的发展前景。
人工智能专业好学吗
人工智能专业对于数学基础不好的人可能会比较难学的。因为需要学编程,而且学的东西比较繁杂,从认知与神经科学、人工智能伦理到人工智能平台与工具都要学。但学得好,就业前景也不错。
虽然一些中国高校开设了相关课程,但总体上缺乏人工智能的基础教学能力,高校在独自培养具有动手能力的应用型人才上有所欠缺。
人工智能极富挑战性
从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。2年前 -
有一定难度,但人工智能方向是当下热门。假如自己现在没有人工智能方向的基础,可以了解人工智能行业当中比较热门的课程具体内容,了解清楚以后感兴趣就可以深入学习。因为每个人对知识的看法程度是不一样的,相比于想,付出行动才能知道适合自己的学习方式和感兴趣的方法。
但假如是工作转行,可以充分利用自己的工作经历和能力,让它成为加分项,以此为突破转向人工智能,也是一种不错的方式。
若帮助到您,求采纳~
2年前 -
当然可以自学。人工智能作为新时代科学飞速发展的产物之一,他的出现极大的便利了人们的生活,提高了人们对生活的体验。作为新兴的产业之一,会有很多小伙伴对其产生浓厚的兴趣,那么今天就让我们来讲讲如何学习人工智能,顺便分享几个学习人工智能的网站以供大家参考。
首先,人工智能属于计算机的一个分支,他是科技发展的重要产物,同样也是科技强大的体现。如果决定想要学习人工智能,当然不论是学任何东西。第一步就是要先了解你所要学习的具体是什么东西。就拿人工智能来举例,我们要先了解这一领域以及一些相关的基础知识。
一、人工智能是什么?
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。当我们在了解了基础的知识后我们还要对其进行下一步定义,就是我们为什么要去学习这项专业也就是我们要拿他去干什么?也就是明确目的性。
人工智能
你的目的是什么?是想要做基础的学术研究、比较感兴趣简单的进行了解还是说当成一个具体的就业方向,然后想明白这个问题我们再去根据他来进行有重点地去学习这项专业。像人工智能他的方向可能会有很多例如:机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
选择相关的带着目的地去进行学习,这样是最有效率的。
好了,接下来由我来分享几个有关学习人工智能的网站
网站一:美国人工智能协会(网址: http://www.aaai.org/ )
美国人工智能协会官网
作为美国一个非盈利性的科学社团组织,主要致力于让机器产生智慧思考和智能行为的研究。此外,提升公众对人工智能的理解,对人工智能实践人员的教学和培训,为人工智能领域的研究者和投资者提供指导等也都是AAAI的实践内容。
网站二:智能代理家园(Agentland 网址: http://www.agentland.com/ )
智能代理家园(官网
智能代理是人工智能的应用领域之一,在中学人工智能课程教学中,适当介绍智能代理的基本概念和工作原理,并让学生与智能代理实例进行交互操作,能使其不但感受到智能代理的智慧和人性化服务,并且将由对智能代理的亲身体验,而产生对人工智能课程学习的浓厚兴趣。PS:可以当作入门学习的基础。
好了以上就是对人工智能的基本了解与自学方法,感兴趣的小伙伴可以去学习一下。
3年前 -
在美国,单独开设AI的院校不多,一般是博士才会涉及AI的具体科研项目,硕士主要是修读相关课程。
核心课程
Artificial Intelligence 人工智能
Machine Learning 机器学习
Advanced Operating Systems 高级操作系统
Advanced Algorithm Design 高级算法设计
Computational Complexity 计算复杂性
Mathematical Analysis 数学分析
Advanced Computer Graphics 高级计算机图形
Advanced Computer Networks 高级计算机网络
就业方向参考
(1)搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、图片搜索、视频搜索等都是未来的方向)
(2) 医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。
(3)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;
(4)还有一些图像处理方面的人才需求的公司,如威盛、松下、索尼、三星等。
另外,AI方向的人才都是高科技型的,在待遇方面自然相对比较丰厚,所以很这个方向很有发展前途。
3年前 -
人工智能专业学习的主要课程有认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程等。人工智能专业是中国高校人才计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。3年前
-
首先,你的基础怎么样。很多时候,事实证明,有人天生就是学理科的料,他们的数学计算能力很强,逻辑思维很严谨,别人抓破脑袋也想不明白的高数、线性积分,在他们眼里就是小菜一碟。如果你在数学、逻辑等方面的基础很好,那就说明你天生就是干这行的人,叫老天爷赏饭吃,入门真的很快,随便碾压别人。其次,你对人工智能是否真的感兴趣。兴趣是最好的老师,人工智能是比较深奥的领域,是一门极具挑战性的科学,要沉得下心来钻研,这时候能不能撑得下去,那就看你的兴趣和意志了。为什么兴趣这么重要?我给你说一个例子吧,大学的时候,我一个哥们,突然对滑冰感兴趣,可能是在某个时间在溜冰场遇到了喜欢的人吧。那一整个学期,他不仅自己拼命苦练,还看了各种教学视频,买了各种专业的设备,从一个菜鸡变成业余,再变成能花样滑冰。别人都在宿舍玩游戏的时候,他在滑冰;别人在睡觉的时候,他还在练。等我们在溜冰场看到他的时候,都震惊了,竟然能这么熟练,我们站都没站稳,还在反复摔到烂屁股,他已经在跟别人玩花样了。老实说,如果不是兴趣,我想不出有什么理由让他坚持了下来。3年前
-
人工智能是比较好学的,因为这个专业是比较实心,比较时髦的,以后就业前景是非常好的,可以增加自己的实力3年前
-
不太好学,门槛比较高,人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
3年前 -
大家在学习一门新技术的时候,学习方式很重要,如果能够选择一个适合自己的方式去学习,那么学习效果也能事半功倍,再辅助以足够的练习,那么从这种层面来说学人工智能不难。3年前
-
人工智能的学习,简单点来说,就是有3点,做到就相当于学会了人工智能,然后找工作实习就可以了。
第一点学好数学知识
人工智能就是计算机科学的一个分支,不过也有借助其他计算机技术的时候,它和计算机的主要组成部分非常相似,差异的地方主要就是形态。它们都是硬件和软件相配合,硬件就是实实在在可以看见,可以触碰到的物品,而软件则是在内部运行的,是一种可以对硬件进行控制,实现“智能”的程序。而软件主要是经由程序设计来完成的。
程序设计就是一大堆的英文字母,被组合在一起,表达一种独有的信息,不过除了这些还会需要到数学知识,虽然在一些比较基础的或者是简单的程序上用的数学知识很少,不过随着程序越复杂,用到的数学知识就会越多,比如逻辑思维、数据结构、算法等等。
第二点学习编程语言
人工智能编程语言有一个共同的特点,那就是这些语言都是面向所要解决的问题、结合知识表示、完全脱离当代计算机的诺依曼结构特性而独立设计的;它们又处于比面向过程的高级编程语言更高的抽象层次。因此,用这些语言编写的程序,在现代计算机环境中,无论是解释或编译执行,往往效率很低。尤其当程序规模很大、很复杂时,将浪费大量系统资源(主要指处理机占用时间和存储空间占用量),使系统性能下降到难以容忍的地步。
第三点实战
理论知识只是理论知识和实际运用是两回事,拥有再好的理论,不能实现在现实中,也是没有用的,所以基础知识学完后就需要进行实习了,把学来的知识在实际的案例中慢慢吸收一遍,会得到不一样的理解。4年前 - 并不容易
人工智能属于前沿科技,都不会特别容易,人工智能主要是机器学习,积极学习,包括理论实践两部分,理论部分对数学要求非常高,实践部分稍微简单一些,因为大多数人使用的方法已经有人写好了
需要你学会python
如果只是做做简单的应用,那么人工智能也不是太难4年前 -
第一步:复习线性代数。(学渣的线代忘了好多-_-||)
懒得看书就直接用了著名的——麻省理工公开课:线性代数,深入浅出效果拔群,以后会用到的SVD、希尔伯特空间等都有介绍;
广告:边看边总结了一套笔记 GitHub – zlotus/notes-linear-algebra: 线性代数笔记。
第二步:入门机器学习算法。
还是因为比较懒,也就直接用了著名的——斯坦福大学公开课 :机器学习课程,吴恩达教授的老版cs229的视频,讲的非常细(算法的目标->数学推演->伪代码)。这套教程唯一的缺点在于没有介绍最近大火的神经网络,但其实这也算是优点,让我明白了算法都有各自的应用领域,并不是所有问题都需要用神经网络来解决;
多说一点,这个课程里详细介绍的内容有:一般线性模型、高斯系列模型、SVM理论及实现、聚类算法以及EM算法的各种相关应用、PCA/ICA、学习理论、马尔可夫系列模型。课堂笔记在:CS 229: Machine Learning (Course handouts),同样非常详细。
广告:边看边总结了一套笔记 GitHub – zlotus/notes-LSJU-machine-learning: 机器学习笔记
第三步:尝试用代码实现算法。
依然因为比较懒,继续直接使用了著名的——机器学习 | Coursera ,还是吴恩达教授的课程,只不过这个是极简版的cs229,几乎就是教怎么在matlab里快速实现一个模型(这套教程里有神经网络基本概念及实现)。这套课程的缺点是难度比较低,推导过程非常简略,但是这也是它的优点——让我专注于把理论转化成代码。
广告:作业参考 GitHub – zlotus/Coursera_Machine_Learning_Exercises: Machine Learning by Andrew Ng from Coursera
第四步:自己实现功能完整的模型——进行中。
还是因为比较懒,搜到了cs231n的课程视频 CS231n Winter 2016 – YouTube ,李飞飞教授的课,主讲还有Andrej Karpathy和Justin Johnson,主要介绍卷积神经网络在图像识别/机器视觉领域的应用(前面神经网络的代码没写够?这门课包你嗨到爆~到处都是从零手写~)。这门课程的作业就更贴心了,直接用Jupyter Notebook布置的,可以本地运行并自己检查错误。主要使用Python以及Python系列的科学计算库(Scipy/Numpy/Matplotlib)。课堂笔记的翻译可以参考 智能单元 – 知乎专栏,主要由知友杜客翻译,写的非常好~
在多说一点,这门课对程序员来说比较走心,因为这个不像上一步中用matlab实现的作业那样偏向算法和模型,这门课用Python实现的模型同时注重软件工程,包括常见的封装layer的forward/backward、自定义组合layer、如何将layer组成网络、如何在网络中集成batch-normalization及dropout等功能、如何在复杂模型下做梯度检查等等;最后一个作业中还有手动实现RNN及其基友LSTM、编写有助于调试的CNN可视化功能、Google的DeepDream等等。(做完作业基本就可以看懂现在流行的各种图片风格变换程序了,如 cysmith/neural-style-tf)另外,这门课的作业实现非常推崇computational graph,不知道是不是我的幻觉……要注意的是讲师A.K的语速奇快无比,好在YouTube有自动生成解说词的功能,准确率还不错,可以当字幕看。
广告:作业参考 GitHub – zlotus/cs231n: CS231n Convolutional Neural Networks for Visual Recognition (winter 2016) (我的在作业的notebook上加了一些推导演算哦~可以用来参考:D)
5年前
