人工智能学学什么?人工智能能否战胜人脑?

美股 63

回复

共17条回复 我来回复
  • 张英伟的头像
    张英伟
    这个人很懒,什么都没有留下~
    评论

    1.人工智能要学哪些专业课程数据科学与大数据专业和人工智能专业的必修基础课程方面一般包含大数据(人工智能)概论、Linux操作系统、Java语言编程、数据库原理与应用、数据结构、数学及统计类课程(高等数学、线性代数、概率论、数理统计)。

    2.大数据应用开发语言、Hadoop大数据技术、分布式数据库原理与应用、数据导入与预处理应用、数据挖掘技术与应用、大数据分析与内存计算等。选修的课程方面数据可视化技术、商务智能方法与应用、机器学习、人工智能技术与应用等。实践应用课程方面海量数据预处理实战、海量数据挖掘与可视化实战等。

    3.数据科学与大数据技术与人工智能专业可从事的岗位有:分析类,分析工程师、算法工程师;研发类,架构工程师、开发工程师、运维工程师;管理类,产品经理、运营经理。

    2年前 0条评论
  • 玩趣~小飛的头像
    玩趣~小飛
    这个人很懒,什么都没有留下~
    评论

    人工智能专业学的内容如下:

    1、人工智能学习内容

    学习内容包括数学基础、算法积累以及编程语言。数学要学好高数、线性代数、概率论、离散数学等等内容,算法积累需要学会人工神经网络、遗传算法等等,还需要学习一门编程语言,通过编程语言实现算法,还可以学习一下电算类的硬件基础内容。

    2、人工智能专业应用领域

    应用领域是很广泛的,主要有图像识别、博弈论、工智能导论、机器学习等,当然想要在这些领域有所发展,还需要学习一些信号处理、微积分、数据基础结构等等知识内容,保证使用过程中,有一定的理论来支撑。

    3、人工智能就业前景

    随着智能化的发展,人工智能技术会在互联网行业逐步应用和普及,把技术应用于物联网、大数据等行业,所以就业需求会不断扩大,我们也将会频繁与智能体互动和交流,这也是未来社会生产环境的发展趋势,需要我们去迎合时代发展的需要。

    随着人工智能的不断发展,对我们提出了新的要求,所以相关的人工智能基础内容,一定要学习起来,掌握人工智能技术将成为一个必然的趋势,学习人工智能专业的学生也会越来越多,相关技能的教育,也会迎来更多发展机会。

    2年前 0条评论
  • 徐杰的头像
    徐杰
    这个人很懒,什么都没有留下~
    评论
    学人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
    需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
    需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
    top域名认为人工智能门槛比较高,需要积累,如果你有这方面的天赋,可以去尝试。
    2年前 0条评论
  • 玖一的头像
    玖一
    这个人很懒,什么都没有留下~
    评论

    人工智能专业主要需要学:《人工智能、社会与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》。

    《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》、《问题表达与求解》、《人工智能的现代方法II》、《机器学习、自然语言处理、计算机视觉等》。

    人工智能专业介绍

    人工智能(Artificial Intelligence)是中国普通高等学校本科专业。人工智能,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

    2年前 0条评论
  • 果儿的头像
    果儿
    这个人很懒,什么都没有留下~
    评论

    要了解人工智能学什么内容,需要首先了解人工智能是什么:

    1、人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的 科技 产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

    2、人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

    那么,人工智能学什么内容呢?

    目前人工智能专业的学习内容主要包括: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。

    需要的基础课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)。

    从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

    想必大家也都知道,现在是一个逐渐智能化的 社会 ,随着 科技 的不断进步,越来越多的智能化产品开始进入到人们的生活中。而近些年,相信大家经常会听到人工智能四个字,人工智能这个行业比较吸引人,同时薪资待遇也较好。因此,很多的大学毕业生毕业之后都想要进入这个行业,但进入这个行业并不容易,如果是零基础的话更是需要学习很多东西才行。那么人工智能入门需要我们学习什么呢?

    需要我们了解的一点是人工智能是一个综合学科,其本身涉及很多方面,比如神经网络、机器识别、机器视觉、机器人等,因此,我们想要学好整个人工智能是很不容易的。

    首先我们需要一定的数学基础,如:高数、线性代数、概率论、统计学等等。很多人可能要问,我学习人工智能为什么要有数学基础呢?二者看似毫不相干,实则不然。线性代数能让我们了解如何将研究对象形象化,概率论能让我们懂得如何描述统计规律,此外还有许多其他数学科目,这些数学基础能让我们在学习人工智能的时候事半功倍。

    然后我们需要的就是对算法的累积,比如人工神经网络、遗传算法等。人工智能的本身还是通过算法对生活中的事物进行计算模拟,最后做出相应操作的一种智能化工具,算法在其中扮演的角色非常重要,可以说是不可或缺的一部分。

    最后需要掌握和学习的就是编程语言,毕竟算法的实现还是需要编程的,推荐学习的有Java以及Python。如果以后想往大数据方向发展,就学习Java,而Python可以说是学习人工智能所必须要掌握的一门编程语言。当然,只掌握一门编程语言是不够的,因为大多数机器人的仿真都是采用的混合编程模式,即采用多种编程软件及语言组合使用,在人工智能方面一般使用的较多的有汇编和C++,此外还有MATLAB、VC++等,总之一句话,编程是必不可少的一项技能,需要我们花费大量时间和精力去掌握。

    人工智能现在发展得越来越快速,这得益于计算机科学的飞速发展。可以预料到,在未来,我们的生活中将随处可见人工智能的产品,而这些产品能为我们的生活带来很大的便利,而人工智能行业的未来发展前景也是十分光明的。所以,选择人工智能行业不会错,但正如文章开头所说,想入行,需要我们下足功夫,全面掌握这个行业所需要的技能才行。

    1.数学基础:

    高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析,博弈论;

    2.算法积累:

    神经网络,支持向量机,贝叶斯,决策树,逻辑回归,线性模型,聚类算法,遗传算法,估计方法,特征工程等;

    3.编程语言:

    至少掌握一门编程语言,越精通越好,毕竟算法的实现还是要编程的;

    4.技术基础:

    计算机原理,操作系统,程序设计语言,分布式系统,算法基础;

    人工智能,即AI(ArtificialIntelligence),是一门包含计算机、控制论、信息论、神经生理学、心理学、语言学等综合学科。

    该概念第一次在达茅斯顿学术会议上提出:人工智能是从计算机应用系统角度出发,研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以及延生人类智能科学。

    核心课程

    ArtificialIntelligence人工智能

    MachineLearning机器学习

    AdvancedOperatingSystems高级操作系统

    AdvancedAlgorithmDesign高级算法设计

    ComputationalComplexity计算复杂性

    MathematicalAnalysis数学分析

    AdvancedComputerGraphics高级计算机图形

    AdvancedComputerNetworks高级计算机网络

    就业方向参考

    (1)搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、图片搜索、视频搜索等都是未来的方向)

    (2)医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。

    (3)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;

    (4)还有一些图像处理方面的人才需求的公司,如威盛、松下、索尼、三星等。

    另外,AI方向的人才都是高 科技 型的,在待遇方面自然相对比较丰厚,所以很这个方向很有发展前途。

    高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。

    需要算法的积累:

    人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

    需要掌握至少一门编程语言:

    比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

    学习人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。

    需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

    需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

    一、 Python基础

    二、 数学基础,其中包含微积分基础、线性代数以及概率统计

    三、 各种框架,如Tensorflow等

    四、 深度学习,其中包含机器学习基础、深度学习基础、卷积神经网络、循环神经网络、生成式对抗神经网络以及深度强化学习。

    五、 商业项目实战,如MTCNN+CENTER LOSS 人脸侦测和人脸识别、YOLO V2 多目标多种类侦测、GLGAN 图像缺失部分补齐以及语言唤醒等。

    熟练掌握C程序设计语言,以及C++、Java、Visual Basic中的一种程序设计语言

    从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

    感谢题主提出的问题,非常荣幸能够做出回答。

    1.人工智能是计算机科学的一个分支,它试图理解智能的本质,并产生一种新的智能机器,它能以类似人类智能的方式做出反应。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统。自人工智能诞生以来,其理论和技术日益成熟,应用领域不断扩大。可以想象,人工智能带来的 科技 产品将成为未来人类智能的“容器”。人工智能可以模拟人类意识和思维的信息过程。人工智能不是人类智能,但它可以像人类一样思考,并可能超越人类智能。

    2.人工智能是一门具有挑战性的科学,从事这项工作的人必须了解计算机知识、心理学和哲学。人工智能是一门非常广泛的科学,它由不同的领域组成,如机器学习、计算机视觉等。一般来说,人工智能研究的主要目标之一是使机器能够胜任一些通常需要人类智能的复杂任务。

    那么,人工智能学到了什么?

    目前,人工智能专业的学习内容主要包括:机器学习、人工智能导论(搜索方法等)。)、图像识别、生物进化理论、自然语言处理、语义网、博弈论等。

    所需的基础课程主要是信号处理、线性代数、微积分和编程(有数据结构基础)。

    从专业的角度来看,机器学习、图像识别和自然语言处理都是大方向,只要你精通其中的一个,你就已经非常强大了。所以不要看太多的内容,有些你只需要掌握,你需要选择一个方向来深入学习。事实上,严格来说,人工智能不难学,但不容易学。它需要一定的数学基础和一段时间的积累。

    2年前 0条评论
  • suansuanmao的头像
    suansuanmao
    这个人很懒,什么都没有留下~
    评论

    人工智能专业学什么

    人工智能专业学什么,这一两年是人工智能专业开始朝专门化发展的前两年,这是一个属于人工智能的时代。世界许多国家都在加紧人工智能方面的研究,人工智能已经列入国家中长期发展规划。

    人工智能专业学什么1

    人工智能是一个包含很多学科的交叉学科,你需要了解计算机的知识、信息论、控制论、图论、心理学、生物学、热力学,要有一定的哲学基础,有科学方法论作保障。人工智能学习路线最新版本在此奉上:

    首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析;

    其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;

    当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;

    1、从基础学科来分析

    人工智能主要得学习数学,计算机,算法,心理学,统计学,概率学。当然这些主要是基础的。要想深造还得涉猎更多的垂直行业,比如社会学领域的人工智能就离不开社科,经济学领域的人工智能离不开财经等等。

    2、人工智能的`方向

    §机器学习

    §深度学习

    §模式识别

    §计算机视觉

    等等。不展开了,自己百度。

    3、人工智能前景广阔

    人工智能已经列入国家中长期发展规划。未来,不对,现在人工智能已经或正在渗入生产生活的方方面面。

    目前人工智能专业的学习内容有: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。

    需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)从上面的专业课程内容来看,需要掌握的人工智能相关的知识内容还是很多的。

    从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

    人工智能专业学什么2

    首先,从当前的技术发展趋势来看,人工智能专业的发展前景还是非常广阔的,当前不论是云计算、大数据技术,还是物联网相关技术,最终的发展诉求之一都是智能化,而智能化也是诸多技术体系实现价值增量的重要环节,所以人工智能当前也是科技研发的一个重点领域。

    虽然人工智能技术的发展对于整个科技领域都有非常重要的意义,而且人工智能技术的发展对于产业领域的创新也有非常多的影响,但是由于人工智能技术本身涉及到的内容非常多,而且难度也比较高,所以人工智能技术的发展必然会经历一个长期的过程。

    虽然人工智能技术的发展需要一个过程,但是当前随着各大科技公司纷纷开放自身的人工智能平台,当前人工智能的行业生态也有了一定的规模,相信在5G通信的推动下,未来人工智能领域也会迎来一个更好的发展环境。

    从人才需求趋势来看,由于人工智能领域依然处在发展的初期,所以当前人工智能领域的人才需求依然比较重视高端研发型人才,所以当前选择人工智能专业,最好考虑读一下研究生,这会明显提升自身的就业竞争力。

    从大的发展趋势来看,在人工智能技术逐渐开始落地应用之后,产业领域会释放出大量高端应用型人才的需求,所以如果没有读博的计划,当前可以重点考虑一下专硕,专硕的人才培养规模会逐渐扩大,所以选择专硕也会更容易考研成功。

    最后,对于本科生来说,在学习人工智能技术的过程中,一定要重视开发能力的提升,同时要选择一个自己的主攻领域,虽然当前计算机视觉和自然语言处理领域已经汇集了大量的学生,但是这两个领域往往也有更好的学习体验。

    2年前 0条评论
  • 李亚茹的头像
    李亚茹
    这个人很懒,什么都没有留下~
    评论
    作为一名计算机专业的教育工作者,我来回答一下这个问题。
    从大的技术层面来看,人工智能的知识体系主要涉及到六个大的学习方向,包括自然语言处理、计算机视觉、机器学习(深度学习)、自动推理、知识表示和机器人学,这些方向各有体系且联系紧密。
    人工智能是典型的交叉学科,涉及到数学、哲学、控制学、计算机、经济学、神经学和语言学等学科,同时学习人工智能还需要具有一定的实验环境,对于数据、算力和算法都有一定的要求,所以当前人工智能领域的人才培养依然以研究生教育为主。
    对于初学者来说,如果想入门人工智能领域,可以从机器学习入手,一方面机器学习的知识体系相对比较容易理解,另一方面机器学习的应用场景也比较多,机器学习也是大数据分析的两种常见方式之一。
    机器学习的步骤涉及到数据收集、算法设计、算法实现、算法训练、算法验证和算法应用,这个过程需要学习编程语言、数据整理和算法设计这三大块内容。编程语言可以从Python语言开始学起,目前Python语言在机器学习领域的应用也比较普遍,有大量的案例可以参考。在学习的初期完全可以采用一些公开的数据集,这样也方便做结果对比,而算法可以从基础的常见算法入手,比如决策树、朴素贝叶斯、支持向量机等等。
    学习机器学习的过程还可以借助于当前的人工智能平台来完成,一部分大数据(云计算)平台也提供了大量机器学习方面的实践环境,基于这些平台来完成机器学习实验会更方便一些,而且也会积累一定的实践经验。
    3年前 0条评论
  • 张艳的头像
    张艳
    这个人很懒,什么都没有留下~
    评论

    人工智能是中国普通高等学校本科专业。人工智能,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科新兴学科、研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。


    发展背景

    AI,全称是Artificial Intelligence,即人工智能,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

    以上内容参考 百度百科-人工智能

    3年前 0条评论
  • 刘语煊的头像
    刘语煊
    这个人很懒,什么都没有留下~
    评论

    人工智能专业主要学的是核心课程包括:数学、统计、计算机、自动化等,这些学科都属于人工智能专业的核心课程。

    5年前 0条评论
  • 甜甜的头像
    甜甜
    这个人很懒,什么都没有留下~
    评论
    人工智能的研究主要有三方面:一是纯理论性的,以强人工智能或者神经网络为研究方向,这样的话,本科可以选择神经科学,也可以选修心理学、哲学、计算机科学二是从算法层面对人工智能的优化,这也是大多数人现在对人工智能的理解,本科自然要学计算机科学了,但博弈论之类重视逻辑的小类别学科也有选修或者自学的必要。第三种就是工业应用的方面。楼主的认识很对,这样主要应该学习自动化和机械控制。不知楼主在国内还是国外读大学。在国外,人工智能的理论研究还是很有价值的。国内嘛就别想了。在国内,计算机是现在很火的专业不必多说。选机械控制专业的话就业前景非常好。楼主你说喜欢硬件方面科技产品设计?若不是机械控制,人工智能目前还主要是研究算法层面的。电子工程这样的硬件专业目前对人工智能还没啥应用。当然楼主有志于在国内研究神经网络那是祖国的骄傲啊^ ^ 人工智能是一门很迷人的学科。希望楼主能找到适合自己的方向好好发展,带动我国的人工智能领域哦!
    6年前 0条评论
  • 流沙的头像
    流沙
    这个人很懒,什么都没有留下~
    评论
    人工智能是人类智能的延伸,所以人工只能会有人类智能的局限.如果用集合表现的话人工智能应该从属于人类智能,也就是说人工智能是人类智能的一种表现,也可以说属于人类智能的范畴.因此人工智能超越人类智能在哲学上讲是一个悖论.虽然卡斯怕罗夫最终输给了深蓝但深蓝是人类工程师制造的,其所有棋步于演算来自全世界的国际象棋棋手,可以说是卡斯怕罗夫跟全世界顶尖的国际象棋棋手下棋而深蓝只是个媒介,归根结底他还是输给了人类智能.人工智能是不会战胜人类的.
    6年前 0条评论
  • 玩趣~小飛的头像
    玩趣~小飛
    这个人很懒,什么都没有留下~
    评论
    不会的。
    首先人工智能远远没有智能到有思想,而且这一步需要的可不是几十年、几百年就能够研究出来的,另外,人工智能的开发是为了更好的辅助人类,既然是辅助,那么能发展成战胜人类几乎不可能。
    7年前 0条评论
  • 艾米的头像
    艾米
    这个人很懒,什么都没有留下~
    评论
    首先,人工智能是不可能建立在现代计算机基础上的。因为现代计算机的一切都是需要人给出模式的。它不可能有创造性的思维能力。
    关于人脑和人工智能,著名的歌德尔定理就一直在被运用到这一领域。计算机到现在有了极大的发展,但是基本原理还是冯·诺依曼提出来的,只是速度和效率大大提高了。从根本上说,计算机的程序,就是一种基于2进制数字运算的命题演算系统。其中给出的公理是有限的,规则是可计算,而判定出命题的真伪时,输出结果,停机并转向下一个命题的处理。这就符合了哥德尔第一不完备定理的条件。可如该定理所说,这样的系统必然是不完备的,也就是说至少有一个命题不能通过这样的“程序”被判明真伪,系统在处理这样的命题时,就无法“停机”,用俗话说就是被“卡”住了,永远不能绕过(举个很简单的例子,就是计算圆周率,永远计算不出结果)。无论你怎样扩充公理集,只要是有限的,这个现象就始终存在。而无限的公理集对于计算机来说,就意味着无限大的存储空间,这显然是不可能的。因此,有些数学家,如彭罗斯就认为,这表明了计算机是有致命缺陷的,而人类的“直觉”不受该定理的限制,所以计算机永远不可能具有人脑的能力,人工智能期望中的真正具有智慧的“电脑”,只不过是如“皇帝的新衣”那样的“皇帝的新脑”。关于这个问题的详细情况,可阅读彭罗斯的《皇帝新脑》。
    为什么人脑与电脑有这样的根本差别呢,彭罗斯认为可能是量子力学不确定性和复杂非线形系统的混沌作用共同造成的。但也有的数学家并不这样认为,他们指出,人脑就基本意义和工作原理来说,与人工智能原理的“图灵机”无根本差别,电脑也存在上述两种作用,这就说明人脑也要受到哥德尔定理的限制。两者间的差别,可用包含非确定性的计算系统说明,就是所谓的“模糊”处理。人脑正是这样的包含了非确定性的自然形成的神经网络系统,它之所以看上去具有电脑不具备的“直觉”,正是这种系统的“模糊”处理能力和效率极高的表现。而传统的图灵机则是确定性的串行处理系统,虽然也可以模拟这样的“模糊”处理,但是效率太低下了。而正在研究中的量子计算机和计算机神经网络系统才真正有希望解决这样的问题,达到人脑的能力。
    对于电脑是“真脑”还是“皇帝的新脑”,还存在很大的争议,有很多的问题需要解决,很多都是现在世界上的顶尖科学家研究的尖端课题。各方面研究都表明,人脑在“运算”时,的确与电脑的基本原理是一样的,只不过电脑是用电子元件的“开、闭”和电信号的传递体现,人脑则表现为神经原的“冲动、抑制”和化学信号(当然也包括电信号)的传递。这与哥德尔定理的条件没有本质上的差别。而认识过程中的“思维是客观实在的近似反映,语言是思维的近似表达”这点,正是受哥德尔定理限制的结果。就拿语言(指形式上的)来说,完全可以转化为有限公理和一定规则下的符号逻辑系统,也就是一种符合定理条件的形式公理系统。该定理恰恰说明,这样的系统中不完备,存在不能用该系统证实的命题,对于这个系统来说,就是语言对思维的表达不完全,也就是我们常说的“只可意会,不可言传”。这也与我们经常感觉到的“辞不达意”是相吻合的,任何形式上的语言都不能完全准确的表达我们的思想。还有另一个事实也说明这点,就是翻译。文对文的形式语言翻译虽然不难,可是如实地表达原来语言中的准确蕴义就非常难了,甚至可以说是不可能的事情。如果能证明人类的思维也可以转化为这样的形式公理系统,那人脑也一定受哥德尔定理的限制。
    人工智能和人脑的问题我们先说到这里。接下去说一下人类毁灭和被什么替代的问题。如果人类在未进化到一定程度前就被毁灭,那这一话题就无实质意义了。那么我们就说下人类进化后应该是被什么所替代的问题。我个人观点是,人类如果能顺利进化,那之后肯定是摆脱包括肉体的所有有形载体的束缚以另一种能量形式存在于宇宙中的更高智慧体。而人工智能无法避免的需要某种有形载体才能存在。因此被人工智能所取代的想法太过狭义了。
    8年前 0条评论
  • 杨丽的头像
    杨丽
    这个人很懒,什么都没有留下~
    评论
    目前来说,超越人脑还不可能实现。现在的人工智能虽然发展速度惊人,但只是计算和分析方面。要想超越人脑,必须让计算机拥有情商,也就是感情色彩。现在还没有哪家计算机公司在这方面有所突破。
    8年前 0条评论
  • A米的头像
    A米
    这个人很懒,什么都没有留下~
    评论
    简单的说人工智能就是人类通过编写程序来让机器做一些模仿人类思考问题的过程来控制机器来做一些操作。就如楼上所说以现在的科技来说电子元件时候出现电脑战胜人脑的事情是不大可能,也许将来会有。但现在是不可能。
    16年前 0条评论
  • 米米妈的头像
    米米妈
    这个人很懒,什么都没有留下~
    评论
    首先问房主你所说的是哪一种人工智能,人类现在可以制造两种人工智能:
    A;用各种程序定义人工智能的思维,将这些人造思维限制在程序的范围之内,这种人工智能专业化倾向很大,基本上只是一台按照程序工作的机器,或者说根本不算智慧。
    B;运用意识原理改造电脑系统,从而产生智能效应,这种人工智能会发展成什么样子完全靠长期与之接触的人是如何教育它的,它的优点就是全面化,只要你能想得到(现实中可以作到)他就能帮助人类实现属于自主思维的人工智能,最大的缺点也就是它不受人类完全控制。

    人工智能会不会挑战人类完全是掌握在人类自己手中的,人类自身的道德水平达到了那种“脱俗”的阶段时,自然这种所谓的、担忧就不存在了,如果全人类用自己的“俗念”去教导人工智能最终不是它们会不会取代人类,而是他们想不想取代人类。人类永远不是自己发明的机器的对手,人类太脆弱了

    19年前 0条评论
  • 然然的头像
    然然
    这个人很懒,什么都没有留下~
    评论
    “阿西莫夫机器人三定律”也是人定出来的,对于”死”的机器绝对有用,但是”自组织”却是自然规律,我们虽然不能肯定,但也绝对不能否定电脑通过电和金属元件能够达到我们通过生物电和细胞构成的人脑结构.当他拥有了自己的思维他干吗还要遵守你的游戏规则?
    而事实证明了,电脑的开发速度是远远快过人脑的.现在的电脑的确不能战胜人脑,因为他具有太强烈的逻辑思维而忽视了非逻辑思维的存在,但是现在技术前沿的一些方法论如”模糊论””遗传算法”等也是基于半逻辑机构的,如果广泛的把这些算法运用于电脑的程序构造中,让他拥有了一个完整的方法论,他战胜人类也不是没有可能(不管哪方面的”战胜”)!
    再说了,我们所知道的生物的确都是由”有机”物构成的,但这个仅仅适用于地球或者说我们已知的范围,但是这个范围在宇宙中来说太狭窄,如果说复杂”生命”形式是宇宙物质自组织的必然结果的话,我们这种脆弱的”生物”远远不会是全部,或者有一种”生物”就是机器那样的钢铁也说不一定啊!
    19年前 0条评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部