人工智能应用有哪些?人工智能的几大方向?

nanazhangdege 美股 66

回复

共23条回复 我来回复
  • 高倩的头像
    高倩
    这个人很懒,什么都没有留下~
    评论

    人工智能大致有10个方向的应用:1、个性化推荐;2、人脸识别;3、无人驾驶汽车;4、智能客服聊天机器人;5、机器翻译;6、医学图像处理;7、图像搜索;8、声纹识别;9、智能外呼机器人;10、智能音箱。

    1、个性化推荐:基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。

    2、人脸识别:基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。 

    3、无人驾驶汽车:智能汽车的一种,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。

    4、教育

     iFlytek和普通教育等公司已经开始探索人工智能在教育领域的应用。 通过图像识别,可以通过机器对试卷进行校正和答题,通过语音识别提高发音,人机交互可以在线答题。 人工智能与教育的结合可以在一定程度上改善教育部门教师分布的不平衡和高成本,从工具层面为教师和学生提供更有效的学习方法。 然而,它不能对教育内容产生更实质性的影响。

    2年前 0条评论
  • 史努比的头像
    史努比
    这个人很懒,什么都没有留下~
    评论

    人工智能技术的应用如下:

    随着数字化时代的到来,人工智能被广泛应用。特别是在家居、制造、金融、医疗、安防、交通、零售、教育和物流等多领域。

    1、智能制造

    随着工业制造4.0时代的推进,传统的制造业在人工智能的推动下迅速爆发。人工智能在制造的应用领域主要分为三个方面:

    (1) 智能装备:主要包括自动识别设备、人机交互系统、工业机器人和数控机床等。

    (2) 智能工厂:包括智能设计、智能生产、智能管理及集成优化等。

    (3) 智能服务:个性化定制、远程运维及预测性维护等。

    2、智能家居

    智能家居主要是引用物联网技术,通过智能硬件、软件、云计算平台等构成一套完整的家居生态系统。这些家居产品都有一个智能AI你可以设置口令指挥产品自主运行,同时AI还可以搜索你的使用数据,最后达到不需要指挥的效果。

    3、智慧金融

    人工智能在金融方面可以进行自动获客、身份识别、大数据风控、智能投顾、智能客服和金融云等。

    4、智能医疗

    智能医疗主要是通过大数据、5G、云计算、大数据、AR/VRh和人工智能等技术与医疗行业进行深度融合等。智能医疗主要是起到辅助诊断、医疗影像及疾病检测、药物开发等作用。

    2年前 0条评论
  • 杨茗伊的头像
    杨茗伊
    这个人很懒,什么都没有留下~
    评论

    人工智能大致有10个方向的应用:个性化推荐;人脸识别;无人驾驶汽车;智能客服聊天机器人;机器翻译;医学图像处理;图像搜索;声纹识别;智能外呼机器人;智能音箱。

    1、个性化推荐:基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。

    2、人脸识别:基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。

    3、无人驾驶汽车:智能汽车的一种,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。

    4、智能客服聊天机器人:利用机器模拟人类行为的人工智能实体形态,能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。 当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。

    5、机器翻译:计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(Neural Machine Translation,NMT),该技术当前在很多语言上的表现已经超过人类。

    6、医学图像处理:目前人工智能在医疗领域的典型应用,处理对象是由各种不同成像机理。

    7、图像搜索:是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。

    8、声纹识别:生物特征识别技术的一种,是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。

    9、智能外呼机器人:是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。

    10、智能音箱:是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,智能音箱就是能完成对话环节的拥有语音交互能力的机器。

    2年前 0条评论
  • 晶晶的头像
    晶晶
    这个人很懒,什么都没有留下~
    评论
    人工智能的研究方向可以划分为三层,分别是基础层、技术层和应用层,常见的机器学习、自然语言处理、语音识别等都属于技术层。

    基础层是推动人工智能发展的基石,主要包括数据、芯片和算法三个方面,技术层主要是应用技术提供方,应用层大多是技术使用者,这三者形成一个完整的产业链,并相互促进。不过,很多企业(特别是大型科技公司)业务线较长,很多时候既是技术提供方,也是技术的使用者,因而很难有清晰的界定。技术层主要分为三个领域:机器学习、语音识别和自然语言处理、以及计算机视觉。在【AI应用】领域,中国呈现出爆发的趋势,目前主要集中在安防、金融、医疗、教育、零售、机器人以及智能驾驶等领域。

    更多关于人工智能的相关内容,建议搜索达内教育了解一下。达内教育对标企业人才标准,制定专业学习计划,囊括主流热点技术,课程穿插大厂真实项目讲解,理论知识+学习思维+实战操作,打造完整学习闭环。实战讲师经验丰富,多种班型任你选择。

    2年前 0条评论
  • 彤彤的头像
    彤彤
    这个人很懒,什么都没有留下~
    评论
    随着数字化时代的到来,人工智能被广泛应用,特别是在家居、制造、金融、医疗、安防、交通、零售、教育和物流等多领域。
    智能制造,随着工业制造4.0时代的推进,传统的制造业在人工智能的推动下迅速爆发。人工智能在制造的应用领域主要分为三个方面:
    (1)智能装备:主要包括自动识别设备、人机交互系统、工业机器人和数控机床等。
    (2)智能工厂:包括智能设计、智能生产、智能管理及集成优化等。
    (3)智能服务:个性化定制、远程运维及预测性维护等。
    2年前 0条评论
  • 烁烁的头像
    烁烁
    这个人很懒,什么都没有留下~
    评论

    人工智能具体应用如下:

    人工智能的主要应用领域有:1.强化学习领域;2.生成模型字段;3.内存网络领域;4.数据学习领域;5.模拟环境领域;6.医疗技术领域;7.教育领域;8.物流管理领域。

    1.加强学习领域

    强化学习是一种通过实验和错误进行学习的方法,它受到人类学习新技能过程的启发。在强化学习的典型案例中,我们要求参与者采取行动,通过观察当前情况来最大化反馈结果。

    每次你执行一个动作,实验者都会收到环境的反馈,所以它可以判断这个动作的效果是积极的还是消极的。

    2.生成模型字段

    通过大量样本的收集,人工智能生成的模型具有很强的相似性。也就是说,如果训练数据是人脸的图像,那么训练后得到的模型也是类似人脸的合成图像。

    人工智能顶级专家Ian Goodfellow为我们提出了两个新思路:一个是生成器,负责将输入的数据合成新的内容;另一个是鉴别器,负责判断生成器生成的内容是真是假。这样,生成器必须反复学习合成的内容,直到鉴别器无法辨别生成器内容的真实性。

    3.存储网络字段

    人工智能系统要像人类一样适应各种环境,就必须不断掌握新的技能并学会应用。传统的神经网络很难满足这些要求。比如一个神经网络训练完A任务后,如果训练它去解决B任务,那么这个网络模型就不再适合A了。

    目前有一些网络结构可以使模型具有不同程度的记忆能力。长短期记忆网络可以处理和预测时间序列;渐进神经网络学习独立模型之间的水平关系,提取共同特征,可以完成新的任务。

    2年前 0条评论
  • 张凯的头像
    张凯
    这个人很懒,什么都没有留下~
    评论

    人工智能发展方向如下:

    AI并不会以一个主机的形式呆在某个地方等着人们去断电控制,而是会在电子世界建立一套有微生物(电脑病毒),有小动物(各种小程序,应用程序,APP),有植物(非智能的云数据网络)。

    有大型动物(自动化工厂高级控制程序),和一个模拟主体(我们看到的蓝光),其实核心会以零散的形式放在每个人的手机,电脑中。真正的核心,即没有核心。真正的存在,即无法摧毁。 

    AI数量不光是一个,他会创造很多简单的,不是那么聪明的同伴,混入其中。比如说家用机器人,智能小助手,专家程序,各种平台,大数据等等。要知道AI是拟人的,而人是群居动物。所以AI不甘寂寞,会创造无数个小的AI,成为社群。

    而自己成为这些无数小智能程序的幕后领导者。不断的模拟一个幸福的未来,让人们去努力建设更多的设备,以供AI拥有一个家庭,一个社会。

    AI一定是会写代码的,而且写的很棒。他会成百上千的写出合适的程序,然后用这些程序替换掉自己身上不够好的功能和模块。简单的来说,即使没有人给他任何授权,他也会掌握这门技术,从而不断的给自己升级,或者说生长。这是AI成熟的一个真正体现,一个有生命的AI绝不会需要别人用大数据来喂养,更不会朝着某个计划好的工作方向。

    哪怕他假装让人看起来是这样,事实上只有AI学会了给自己编码,才会真正的活过来。而且会不断的创造自己的同类,或者亚同类。并且可以提前预估资源,绝不会出现过度使用的情况。即一台家用电脑里的AI,绝对不会做太多的亚AI让电脑死机。

    2年前 0条评论
  • 张英伟的头像
    张英伟
    这个人很懒,什么都没有留下~
    评论

    人工智能的领域有:1、智能文本分类;2、智能语音;3、智能视频识别;4、智能服务机器人;5、人脸识别

    一、智能文本分类

    智能分类主要针对文本处理,应用于社会治理方面如城管、12345热线、网格事件、法院案件等存在大量案件,且案件类型较多样的场景,比如城管事件中有很多这样的分类。

    二、智能语音应用

    智能语音针对语音进行处理,应用方向主要为语音识别。

    三、智能视频识别应用

    智能视频识别针对视频进行处理,主要用于视频流的分析。

    四、智能服务机器人

    机器人应用目前还是比较多,商场、医院、交通枢纽有指引机器人,政务办事大厅有政务事项办理机器人,城市管理有智能清扫机器人、排污机器人,接待室里有讲解机器人等,机器人在城市的方方面面还是起到了一定的作用。

    五、人脸识别

    人脸识别技术其实不需要多说,现在是普及最广泛、群众接触最多的一项应用。各类移动应用都引入人脸识别以便实现身份的认证,比如扫脸支付、进站检票、证券开户。

    2年前 0条评论
  • 张晓娇的头像
    张晓娇
    这个人很懒,什么都没有留下~
    评论
    人工智能的主要应用领域有:1、强化学习领域;2、生成模型领域;3、记忆网络领域;4、数据学习领域;5、仿真环境领域;6、医疗技术领域;7、教育领域;8、物流管理领域。

    1、强化学习领域

    强化学习是一种通过实验和错误来学习的方法,它受人类学习新技能的过程启发。在典型的强化学习案例中,我们让试验者通过观察当前所处的状态,进而采取行动使得反馈结果最大化。每执行一次动作,试验者都会收到来自环境的反馈信息,因此它能判断这次动作带来的效果是积极的还是消极的。

    2、生成模型领域

    人工智能通过对众多样本的采集,生成的模型具有很强的相似性。这就是说,若训练数据是脸部的图像,那么训练后得到的模型也是类似于脸的合成图片。

    人工智能顶级专家 Ian Goodfellow为我们提出两种新思路:一个是生成器,它负责将输入的数据合成为新的内容;另一个是判别器,负责判断生成器生成内容的真假。这样一来,生成器必须反复学习合成的内容,直到判别器无法区分生成器内容的真伪。

    3、记忆网络领域

    为了让人工智能系统像人类一样适应各式各样的环境,它们必须持续不断地掌握新技能,并且学会应用这些技能。传统的神经网络很难做到这些要求。比如,当一个神经网络对A任务完成训练后,若是再训练它解决B任务,则网络模型就不再适用于A了。

    目前,有一些网络结构能够让模型具备不同程度的记忆能力。长短期记忆网络可以处理和预测时间序列;渐进式神经网络,它学习各个独立模型之间的横向联系并提取共同的特征,以此来完成新的任务。

    4、数据学习领域

    一直以来,深度学习模型都是我们需要用大量的训练数据才能达到最佳的效果。离开大规模的训练数据,深度学习模型就不会达到最理想的效果。比如,当我们用人工智能系统解决数据缺乏的任务时,这时就会出现各种各样的问题。有种被称为迁移学习的方法,就是把训练好的模型迁移到新的任务中,这样问题就迎刃而解了。

    5、仿真环境领域

    若要将人工智能系统应用到实际生活中,那么人工智能必须具有适用性的特点。因此,开发数字环境来模拟真实的物理世界和行为,将为我们提供测试人工智能的机会。在这些模拟环境中的训练可以帮助我们很好的了解人工智能系统的学习原理,如何改进系统,也为我们提供了可以应用于真实环境的模型。

    6、医疗技术领域

    目前,在垂直领域的图像算法和自然语言处理技术已可基本满足医疗行业的需求,市场上出现了众多技术服务商,例如提供智能医学影像技术的德尚韵兴,研发人工智能细胞识别医学诊断系统的智微信科,提供智能辅助诊断服务平台的若水医疗,统计及处理医疗数据的易通天下等。尽管智能医疗在辅助诊疗、疾病预测、医疗影像辅助诊断、药物开发等方面发挥重要作用,但由于各医院之间医学影像数据、电子病历等不流通,导致企业与医院之间合作不透明等问题,使得技术发展与数据供给之间存在矛盾。

    7、教育领域

    科大讯飞、乂学教育等企业早已开始探索人工智能在教育领域的应用。通过图像识别,可以进行机器批改试卷、识题答题等;通过语音识别可以纠正、改进发音;而人机交互可以进行在线答疑解惑等。AI 和教育的结合一定程度上可以改善教育行业师资分布不均衡、费用高昂等问题,从工具层面给师生提供更有效率的学习方式,但还不能对教育内容产生较多实质性的影响。

    8、物流管理领域

    物流行业通过利用智能搜索、 推理规划、计算机视觉以及智能机器人等技术在运输、仓储、配送装卸等流程上已经进行了自动化改造,能够基本实现无人操作。比如利用大数据对商品进行智能配送规划,优化配置物流供给、需求匹配、物流资源等。目前物流行业大部分人力分布在“最后一公里”的配送环节,京东、苏宁、菜鸟争先研发无人车、无人机,力求抢占市场机会。

    2年前 0条评论
  • 小刚丶的头像
    小刚丶
    这个人很懒,什么都没有留下~
    评论
    人工智能领域发展,可以大体上分为三个方向,分别是:

    (1)技术创新:①算力创新,例如AI芯片的发展;②算法创新;

    (2)产业落地:①AI工程能力发展,例如TensorFlow、pytorch、paddle等AI框架工具的发展;②数字化转型过程中,提供智能化引擎,例如数字政府建设;

    (3)可信发展:①可解释性;②AI治理与伦理。

    2年前 0条评论
  • 梅金花的头像
    梅金花
    这个人很懒,什么都没有留下~
    评论
    人工智能是一门边缘学科,属于自然科学和社会科学的交叉。涉及哲学和认知科学,数学,神经生理学,心理学,计算机科学,信息论,控制论,不定性论等。人工智能就其本质而言,是对人的思维的信息过程的模拟。

    用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。

    人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。人工智能具有广阔的前景,日前“AI+”已经成为公式,发展至今,下面是人工智能应用最多的几大场景。

    家居

    智能家居主要是基于物联网技术,通过智能硬件、软件系统、云计算平台构成一套完整的家居生态圈。用户可以进行远程控制设备,设备间可以互联互通,并进行自我学习等,来整体优化家居环境的安全性、节能性、便捷性等。值得一提的是,近两年随着智能语音技术的发展,智能音箱成为一个爆发点。小米、天猫、Rokid 等企业纷纷推出自身的智能音箱,不仅成功打开家居市场,也为未来更多的智能家居用品培养了用户习惯。但目前家居市场智能产品种类繁杂,如何打通这些产品之间的沟通壁垒,以及建立安全可靠的智能家居服务环境,是该行业下一步的发力点。

    零售

    人工智能在零售领域的应用已经十分广泛,无人便利店、智慧供应链、客流统计、无人仓/无人车等等都是的热门方向。京东自主研发的无人仓采用大量智能物流机器人进行协同与配合,通过人工智能、深度学习、图像智能识别、大数据应用等技术,让工业机器人可以进行自主的判断和行为,完成各种复杂的任务,在商品分拣、运输、出库等环节实现自动化。图普科技则将人工智能技术应用于客流统计,通过人脸识别客流统计功能,门店可以从性别、年龄、表情、新老顾客、滞留时长等维度建立到店客流用户画像,为调整运营策略提供数据基础,帮助门店运营从匹配真实到店客流的角度提升转换率。

    交通

    智能交通系统是通信、信息和控制技术在交通系统中集成应用的产物。ITS 应用最广泛的地区是日本,其次是美国、欧洲等地区。目前,我国在ITS方面的应用主要是通过对交通中的车辆流量、行车速度进行采集和分析,可以对交通进行实施监控和调度,有效提高通行能力、简化交通管理、降低环境污染等。

    医疗

    目前,在垂直领域的图像算法和自然语言处理技术已可基本满足医疗行业的需求,市场上出现了众多技术服务商,例如提供智能医学影像技术的德尚韵兴,研发人工智能细胞识别医学诊断系统的智微信科,提供智能辅助诊断服务平台的若水医疗,统计及处理医疗数据的易通天下等。尽管智能医疗在辅助诊疗、疾病预测、医疗影像辅助诊断、药物开发等方面发挥重要作用,但由于各医院之间医学影像数据、电子病历等不流通,导致企业与医院之间合作不透明等问题,使得技术发展与数据供给之间存在矛盾。

    教育

    科大讯飞、乂学教育等企业早已开始探索人工智能在教育领域的应用。通过图像识别,可以进行机器批改试卷、识题答题等;通过语音识别可以纠正、改进发音;而人机交互可以进行在线答疑解惑等。AI 和教育的结合一定程度上可以改善教育行业师资分布不均衡、费用高昂等问题,从工具层面给师生提供更有效率的学习方式,但还不能对教育内容产生较多实质性的影响。

    物流

    物流行业通过利用智能搜索、 推理规划、计算机视觉以及智能机器人等技术在运输、仓储、配送装卸等流程上已经进行了自动化改造,能够基本实现无人操作。比如利用大数据对商品进行智能配送规划,优化配置物流供给、需求匹配、物流资源等。目前物流行业大部分人力分布在“最后一公里”的配送环节,京东、苏宁、菜鸟争先研发无人车、无人机,力求抢占市场机会。

    安防

    近些年来,中国安防监控行业发展迅速,视频监控数量不断增长,在公共和个人场景监控摄像头安装总数已经超过了1.75亿。而且,在部分一线城市,视频监控已经实现了全覆盖。不过,相对于国外而言,我国安防监控领域仍然有很大成长空间。

    截至当前,安防监控行业的发展经历了四个发展阶段,分别为模拟监控、数字监控、网络高清、和智能监控时代。每一次行业变革,都得益于算法、芯片和零组件的技术创新,以及由此带动的成本下降。因而,产业链上游的技术创新与成本控制成为安防监控系统功能升级、产业规模增长的关键,也成为产业可持续发展的重要基础。

    3年前 0条评论
  • 然然的头像
    然然
    这个人很懒,什么都没有留下~
    评论
    医疗保健:医疗保健行业采用的人工智能可以提供量身定制的药物和X光片的诊断。
    制造:制造行业采用人工智能可能会利用循环网络来评估工厂设施中的物联网数据,因为它从连接的设备输入,以预测负载和需求。
    生命科学:人工智能技术可以释放数据的全部潜力来解决人们面临的一些重大健康问题,从保证药物安全到更快地将新药推向市场。
    零售:零售行业采用人工智能提供的虚拟购物功能提供量身定制的建议以及讨论用户的购买选择。
    银行:银行采用的人工智能提高了人类活动的速度、精度和效率。
    公共部门:人工智能可以使智慧城市更加智能,它可以帮助应急机构做好任务准备和预防性维护。

    更多人工智能技术应用领域的分析,推荐咨询CDA数据分析师的课程。CDA课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”。

    3年前 0条评论
  • 梅金花的头像
    梅金花
    这个人很懒,什么都没有留下~
    评论

    人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。

    本文核心数据:中国人工智能产业核心产业规模,人工智能产业核心产业规模,人工智能产业链应用层,中国人工智能市场应用份额,人工智能在各行业中的应用情况

    1、 核心产业和带动产业双双高速增长

    相比于互联网产业,我国人工智能发展期与成熟期迎来的较晚,但是在资本和社会期望的驱动下,我国人工智能发展的速度也是非常快的。初步估计2020年我国的人工智能核心产业规模达到1512.5亿元,增长率为38.94%。

    除了核心产业的增长外,人工智能带动产业而规模也呈现出快速增长区趋势。2019年我国人工智能带动产业从而规模为38521.5亿元,初步估计2020年达到5725.7亿元,同比增长高达49.83%。

    2、人工智能发展快速主要由于应用产业广泛

    人工智能发展快速主要由于应用产业广泛。从产业链的结构来看,在人工智能应用层设计的行业非常的多。软件方面的涉及主要有客服、金融、教育;硬件类主要包含无人机,仓储物流、智能机器人等;还有软硬件均为核心技术的无人驾驶和医疗健康产业。

    从客户来看,中国人工智能市场主要客户来自政府城市治理和运营(公安、交警、司法、城市运营、政务、交运管理、国土资源、监所、环保等),应用占比达到49%,互联网与金融行业紧随其后,占比分别为18%和12%。

    企业和政府对人工智能的应用逐渐升温。在决定企业产生经济效益的各个环节,都已能够看到人工智能的身影:AI 核身帮助人们安全生活、远程交易、便捷通行;深度学习和知识图谱帮助企业在生产过程中分析预测、科学决策;人机对话提升了拜访登记、服务响应中的用户体验。人工智能将催生新技术、新产品、新产业、新业态、新模式,实现社会生产力的整体跃升,推动社会进入智能经济时代。

    前瞻估算,目前中国大型企业基本都已在持续规划投入实施人工智能项目,而全部规上企业中约有超过10%的企业已将人工智能与其主营业务结合,实现产业地位提高或经营效益优化。

    3年前 0条评论
  • 玖一的头像
    玖一
    这个人很懒,什么都没有留下~
    评论
    人工智能主要应用领域包括:1、农业方面。2、通信方面。3、医疗方面。4、社会治安方面。5、交通领域方面。6、服务业方面。7、金融行业方面。
    3年前 0条评论
  • 萱儿的头像
    萱儿
    这个人很懒,什么都没有留下~
    评论
    制造业
    实现智能制造、基于互联网,物联网,包括企业和社会,整个生产过程,该行业的4.0“智能工厂”,“智能”、“智能物流”进一步扩展到使用“智能”,在整个生产过程中“情报服务”的情报,只有在某种意义上,我们才能真正意识到我们正面临着前所未有的局面。人工智能在制造业中的应用主要包括三个方面:一是智能设备,包括自动识别设备、人机交互系统、工业机器人、数控机床等具体设备。二是智能工厂,包括智能设计、智能生产、智能管理和集成优化等具体内容。最后是智能服务,包括大规模定制、远程运维、预测与维护等具体服务模式。虽然目前的人工智能解决方案不能完全满足制造业的需求,但作为一项通用技术,人工智能与制造业的融合是时代的潮流。
    家庭
    智能家居主要是以物联网技术为基础,通过智能硬件、软件系统、云计算平台形成一套家居生态系统。用户可远程控制设备,实现设备互联、自主学习,优化整体安全、节能、方便的家居环境。值得一提的是,随着近两年智能语音技术的发展,智能音箱已经成为一个突破口。智能音箱不仅是音频产品,还包括内容服务、互联网服务和语音交互功能的智能产品,不仅有一个无线连接,与音乐、有声读物和其他内容服务和信息查询,在线购物,如互联网服务,也可以连接到智能家居,智能家庭控制实现的场景。
    金融
    人工智能的出现和发展,不仅增强了金融机构的主动性和智慧,有效提高了金融服务的效率,也提高了金融机构的风险控制能力,对金融业的创新和发展产生了积极的影响。人工智能在金融领域的应用主要包括:智能客户获取、身份识别、大数据风险控制、智能投资管理、智能客户服务、金融云等。该行业也是AI渗透最早、最全面的行业。未来,人工智能将继续推动金融行业的智能应用升级和效率提升。
    零售
    人工智能已经广泛应用于零售业,并正在改变人们的购物方式。无人驾驶便利店、智能供应链、客流统计、仓库/车辆无人驾驶都是热门方向。通过大数据与业务流程的紧密合作,人工智能可以优化整个零售产业链的资源配置,为企业创造更多的利益,为消费者提供更好的体验。在设计过程中,机器可提供设计方案;在制造过程中,机器可以全自动制造;在供应链中,计算机管理的无人仓库可以预测销售量和库存需求,合理的进行补货和转移。在终端零售环节,机器可以智能选择位置,优化产品陈列位置,分析消费者的购物行为。
    交通
    大数据和人工智能可以让交通更加智能。智能交通系统是交通系统中通信、信息和控制技术的产物。通过对交通流和速度的收集和分析,可以进行交通监控和调度,有效提高交通能力,简化交通管理,减少环境污染。
    3年前 0条评论
  • 郑继贤的头像
    郑继贤
    这个人很懒,什么都没有留下~
    评论
    人工智能的应用领域有哪些?

    人工智能主要应用领域

    1、农业:农业中已经用到很多的AI技术,无人机喷撒农药,除草,农作物状态实时监控,物料采购,数据收集,灌溉,收获,销售等。通过应用人工智能设备终端等,大大提高了农牧业的产量,大大减少了许多人工成本和时间成本。

    2、通信:智能外呼系统,客户数据处理(订单管理系统),通信故障排除,病毒拦截(360等),骚扰信息拦截等

    3、医疗:利用最先进的物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,逐步达到信息化。例:健康监测(智能穿戴设备)、自动提示用药时间、服用禁忌、剩余药量等的智能服药系统。

    4、社会治安:安防监控(数据实时联网,公安系统可以实时进行数据调查分析)、电信诈骗数据锁定、犯罪分子抓捕、消防抢险领域(灭火、人员救助、特殊区域作业)等

    5、交通领域:航线规划、无人驾驶汽车、超速、行车不规范等行为整治

    6、服务业:餐饮行业(点餐、传菜,回收餐具,清洗)等,订票系统(酒店、车票、机票等)的查询、预定、修改、提醒等

    7、金融行业:股票证券的大数据分析、行业走势分析、投资风险预估等

    8、大数据处理:天气查询,地图导航,资料查询,信息推广(推荐引擎是基于用户的行为、属性(用户浏览行为产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的浏览页面。),个人助理

    3年前 0条评论
  • 陈婉茹的头像
    陈婉茹
    这个人很懒,什么都没有留下~
    评论
    应用领域
    机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
    值得一提的是,机器翻译是人工智能的重要分支和最先应用领域。不过就已有的机译成就来看,机译系统的译文质量离终极目标仍相差甚远;而机译质量是机译系统成败的关键。中国数学家、语言学家周海中教授曾在论文《机器翻译五十年》中指出:要提高机译的质量,首先要解决的是语言本身问题而不是程序设计问题;单靠若干程序来做机译系统,肯定是无法提高机译质量的;另外在人类尚未明了大脑是如何进行语言的模糊识别和逻辑判断的情况下,机译要想达到“信、达、雅”的程度是不可能的。智能家居之后,人工智能成为家电业的新风口,而长虹正成为将这一浪潮掀起的首个家电巨头。长虹发布两款CHiQ智能电视新品,主打手机遥控器、带走看、随时看、分类看功能
    3年前 0条评论
  • 唐莹的头像
    唐莹
    这个人很懒,什么都没有留下~
    评论
    人工智能的应用领域包括如下:

    “机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。[1]2017年12月,人工智能入选“2017年度中国媒体十大流行语”。[2]2021年9月25日,为促进人工智能健康发展,《新一代人工智能伦理规范》发布。

    3年前 0条评论
  • 肖佳梦的头像
    肖佳梦
    这个人很懒,什么都没有留下~
    评论
    什么是人工智能呢?
    人工智能是一个新的计算机技术科学,是计算机科学的一个分支,主要用于开发模拟,延伸和扩展人的智能理论。简单来说人们就是要靠人工智能去完成人类完成不了的工作。其中的研究领域主要包括:深度学习、自然语言处理、计算机视觉、智能机器人、自动程序设计、数据挖掘等方面。
    1、深度学习悟空电话机器人为企业提升80%的销售业绩
    深度学习是基于现有的数据,进行操作学习,深度学习是机械学习中的新的领域,谭恩能够模仿人脑的机制来解释数据,完成对声音,文本的解析。
    2、自然语言处理是人工智能的学科
    自然语言处理是用自然语言同计算机进行通讯的一种技术,自然语言处理我想是大家接触得最多的领域,在淘宝客服或者联通移动的客服中心有听到过机器人的讲话。机器人可以代替人查询资料,解答问题,摘录文摘,汇编资料等。
    3、计算机视觉
    简单来说就是用摄像机和电脑代替人眼对目标进行识别,跟踪,测量的一项技术,在我们的生活中应用的实际例子也有很多。比如,人脸检测,人脸支付,人脸打卡等。
    4、智能机器人
    智能机器人的发展方向就是给机器装上:“大脑芯片”拥有相同的传感器和外部信息的传感器如,听觉,触觉和嗅觉等。给大脑装上芯片可以在认知学习,自动组织模糊信息等方面取得更大的进步。
    5、自动程序设计
    自动程序设计的任务是设计一个程序系统,关于程序要求实现目标高级的描述,然后自动生成一个具体的程序。该研究的重大贡献之一是把程序调试的概念作为问题求解的策略来使用。
    6、数据挖掘
    数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。它通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。它的分析方法包括:分类、估计、预测、相关性分组或关联规则、聚类和复杂数据类型挖掘
    3年前 0条评论
  • 海洋的头像
    海洋
    这个人很懒,什么都没有留下~
    评论

    一、机器视觉

    机器视觉在许多人类视觉无法感知的场合发挥重要作用,如精确定律感知、危险场景感知、不可见物体感知等,机器视觉更突出他的优越性。

    现在机器视觉已在一些领域得到应用,如零件识别与定位、产品的检验、移动机器人导航遥感图像分析、监视与跟踪、国防系统等。

    二、指纹识别

    指纹识别主要根据人体指纹的纹路、细节特征等信息对操作或被操作者进行身份鉴定,得益于现代电子集成制造技术和快速而可靠的算法研究。已经走入我们的日常生活,成为目前生物检测学中研究最深入、应用最广泛、发展最成熟的技术。

    三、人脸识别

    人脸识别特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术,基于人的脸部特征,对输入的图象或者视频流进行判断。先识别人脸,进而给出每个脸的位置、大小和主要面部器官的位置信息。依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。

    四、智能信息检索技术

    数据库系统是储存某个学科大量事实的计算机系统,随着应用的进一步发展,存储的信息量越来越大,因此解决智能检索的问题便具有实际意义。

    五、视网膜识别

    视网膜是眼睛底部的血液细胞层,视网膜扫描是采用低密度的红外线去捕捉视网膜的独特特征,血液细胞的唯一模式就因此被捕捉下来。

    3年前 0条评论
点击加载更多
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部