人工智能使用什么语言?人工智能属于哪个产业?

宋媛丽 美股 51

回复

共25条回复 我来回复
  • 有有的头像
    有有
    这个人很懒,什么都没有留下~
    评论
    人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

    一、机器学习
    机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
    根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
    根据学习方法可以将机器学习分为传统机器学习和深度学习。

    二、知识图谱
    知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
    知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

    三、自然语言处理
    自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
    机器翻译
    机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
    语义理解
    语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
    问答系统
    问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
    自然语言处理面临四大挑战:
    一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
    二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
    三是数据资源的不充分使其难以覆盖复杂的语言现象;
    四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算

    四、人机交互
    人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

    五、计算机视觉
    计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
    目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
    一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
    二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
    三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

    六、生物特征识别
    生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
    识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
    生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

    七、VR/AR
    虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
    虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
    目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势

    2年前 0条评论
  • 壮壮的头像
    壮壮
    这个人很懒,什么都没有留下~
    评论
    人工智能是属于电子信息类的专业类别。电子信息类拥有电子科学与技术、应用电子技术教育、电信工程及管理、电磁场与无线技术、水声工程、广播电视工程、信息工程等专业,其主要特点是计算机技术与机械设备的结合,人工智能也是如此,所以人工智能属于电子信息类的专业类别。
    3年前 0条评论
  • 小南的头像
    小南
    这个人很懒,什么都没有留下~
    评论
    人工智能
    就业方向:科学研究,工程开发。计算机方向。软件工程。应用数学。电气自动化。通信。机械制造
    人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。应用领域包括机器翻译、语言和图像理解、自动程序设计、专家系统等。
    3年前 0条评论
  • 沈鹏的头像
    沈鹏
    这个人很懒,什么都没有留下~
    评论
    人工智能专业是中国普通高等学校本科专业。人工智能是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
    人工智能专业以培养掌握人工智能理论与工程技术的专门人才为目标,学习机器学习的理论和方法、深度学习框架、工具与实践平台、自然语言处理技术、语音处理与识别技术、视觉智能处理技术、国际人工智能专业领域最前沿的理论方法,培养人工智能专业技能和素养,构建解决科研和实际工程问题的专业思维、专业方法和专业嗅觉。
    3年前 0条评论
  • 宋媛丽的头像
    宋媛丽
    这个人很懒,什么都没有留下~
    评论
    人工智能学的是“编程语言”。

    人工智能是一个很广阔的领域,很多编程语言都可以用于人工智能开发。以下是5种比较适用于人工智能开发的编程语言:

    1、Python。由于简单易用,它是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。

    2、Java。它是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。

    3、Lisp。因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言。

    3年前 0条评论
  • 张倩的头像
    张倩
    这个人很懒,什么都没有留下~
    评论
    目前人工智能并不是一级学科,人工智能领域的相关专业分散在自动化系、计算机系等院系中。大学本科阶段与人工智能相关的专业大致有三类(当然还有更加细分的专业):

    1、智能科学与技术专业

    旨在培养具备基于计算机技术、自动控制技术、智能系统方法、传感信息处理等科学与技术,进行信息获取、传输、处理、优化、控制、组织等并完成系统集成的,具有相应工程实施能力,可以在相应领域从事智能技术与工程的科研、开发、管理工作的、具有宽口径知识和较强适应能力及现代科学创新意识的高级技术人才。据悉,目前经教育部正式批准设立“智能科学与技术”本科专业的高校达50余个。

    2、机器人工程专业

    旨在培养掌握工业机器人技术工作必备知识、技术,有较强实践能力、创新精神,主要从事机器人工作站设计、装调与改造,机器人自动化生产线的设计、应用及运行管理等相关岗位工作,具有较强综合职业能力的高素质应用型专门人才。目前,全国开设机器人工程专业的高校已达60余所。

    3、数据科学与大数据技术专业

    旨在培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地培养学生掌握大数据应用中的各种典型问题的解决办法,提升学生解决实际问题的能力。目前全国已有百余所高校开设了这一专业。

    4年前 0条评论
  • 小南的头像
    小南
    这个人很懒,什么都没有留下~
    评论
    人工智能学习主要是以下五种语言:

    Python

    Python语法简单,功能多样,是开发人员最喜爱的AI开发编程语言之一,因为它允许开发人员创建交互式,可解释式性,模块化,动态,可移植和高级的代码,这使得它比Java语言更独特。Python非常便携,可以在Linux,Windows等多平台上使用。另外,Python是一种多范式编程语言,支持面向对象,面向过程和函数式编程风格。由于它拥有简单的函数库和理想的结构,Python很适合神经网络和自然语言处理(NLP)解决方案的开发。

    但是,习惯于Python的开发人员在尝试使用其他语言时,难以调整状态使用不同的语法进行开发。与C ++和Java不同,Python在解释器的帮助下运行,在AI开发中这会使编译和执行变的更慢,不适合移动计算。

    Java

    Java也是一种多范式语言,遵循面向对象的原则和一次编写、到处运行(WORA)的原则。Java是一种可在任何支持它的平台上运行的AI编程语言,而无需重新编译。

    .top域名认为除了AI开发,Java也是最常用的语言之一,兼容了C和C ++中的大部分语法。 Java不仅适用于自然语言处理和搜索算法,并且还适用于神经网络。

    Lisp

    在AI开发中使用Lisp语言,是因为它的灵活性使快速建模和实验成为可能,这反过来又促进了Lisp在AI开发中的发展。例如,Lisp有一个独特的宏观系统,可以帮助探索和实现不同层次的智能。与大多数AI编程语言不同,Lisp在解决特定问题方面效率更高,因为它能够适应开发人员编写解决方案的需求。Lisp非常适合于归纳逻辑项目和机器学习。

    但是,Lisp是计算机编程语言家族中继Fortran之后的第二种最古老的编程语言,作为一种古老的编程语言,Lisp需要配置新的软件和硬件以适应在当前环境下使用。很少有开发人员熟悉Lisp编程。

    Prolog

    Prolog也是最古老的编程语言之一,因此它也适用于AI的开发。 像Lisp一样,它也是主要的AI编程语言。.top域名认为Prolog的机制能够开发出受开发人员欢迎的较为灵活的框架。Prolog是一种基于规则和声明的语言,这是因为它具有规定AI编程语言的事实和规则。

    Prolog支持基本机制,如模式匹配,基于树的数据结构以及AI编程所必需的自动回溯。除了广泛应用于AI项目之外,Prolog也应用于创建医疗系统。

    C ++

    C ++是最快的计算机语言,它特别适用于对时间敏感的AI编程项目。C ++能够提供更快的执行时间和响应时间(这就是为什么它经常用于搜索引擎和游戏)。此外,C ++允许大规模的使用算法,并且在使用统计AI技术方面非常高效。.top域名认为另一个重要因素是由于继承和数据隐藏,在开发中C ++支持重用代码,因此既省时又省钱。C ++适用于机器学习和神经网络。

    4年前 0条评论
  • 大魏的头像
    大魏
    这个人很懒,什么都没有留下~
    评论
    人工智能需要的学的语言就是我们正常人所学的语言。正常人所学的汉语,英语这些语言人工智能都必须要学习。
    4年前 0条评论
  • 郑继贤的头像
    郑继贤
    这个人很懒,什么都没有留下~
    评论
    你好,人工智能能从事的行业很多,硬件,软件内的行业都可以,人工智能是大趋势,也是世界潮流,在人工智能研发这一块,发展还是挺不错的,最近华通机器人好像在招聘人工智能这一块的,您可以去看看~
    4年前 0条评论
  • 老话的头像
    老话
    这个人很懒,什么都没有留下~
    评论
    是一个综合性专业,计算机专业,自动化专业,新材料专业,都有关联,人工智能是需要多学科的综合,可以看你的喜好选择。aqui te amo。
    4年前 0条评论
  • 彤彤的头像
    彤彤
    这个人很懒,什么都没有留下~
    评论
    人工智能专业是中国高校人计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。2018年4月,教育部在研究制定《高等学校引领人工智能创新行动计划》,并研究设立人工智能专业,进一步完善中国高校人工智能学科体系。2019年3月,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,根据通知,全国共有35所高校获首批「人工智能」新专业建设资格。2020年3月3日,教育部公布2019年度普通高等学校本科专业备案和审批结果,“人工智能”专业成为热门。
    4年前 0条评论
  • 流沙的头像
    流沙
    这个人很懒,什么都没有留下~
    评论
    Python语法简单,功能多样,是开发人员最喜爱的AI开发编程语言之一,因为它允许开发人员创建交互式,可解释式性,模块化,动态,可移植和高级的代码,这使得它比Java语言更独特。Python非常便携,可以在Linux,Windows等多平台上使用。另外,Python是一种多范式编程语言,支持面向对象,面向过程和函数式编程风格。由于它拥有简单的函数库和理想的结构,Python很适合神经网络和自然语言处理(NLP)解决方案的开发。

    但是,习惯于Python的开发人员在尝试使用其他语言时,难以调整状态使用不同的语法进行开发。与C ++和Java不同,Python在解释器的帮助下运行,在AI开发中这会使编译和执行变的更慢,不适合移动计算

    5年前 0条评论
  • 刘罡的头像
    刘罡
    这个人很懒,什么都没有留下~
    评论
    人工智能用的比较多的语言有:Python、JAVA 和相关语言、C/C++、JavaScript、R语言。

    从事人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。

    需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

    需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。有的还会需要了解域名比如com、top等等。

    5年前 0条评论
  • 希希的头像
    希希
    这个人很懒,什么都没有留下~
    评论
    小白学人工智能的话,Python可以。但有一定编程和数学基础的不建议学Python,因为这培养出来的只是算法工程师,等以后AI学习普及起来,Python就没什么竞争力了。所以,有一定条件的最好还是以算法研究员为目标,学C/C++比较好。因为是计算密集型,需要非常精细的优化,还需要GPU、专用硬件之类的接口,这些都只有C/C++能做到,所以某种意义上来说,其实C/C++才是人工智能领域最重要的语言。武汉维识教育科技提供的人工智能学习方案专门针对有一定编程和数学基础的学生,在武汉光谷也设有机器人实验室,学生在学习算法的同时可以利用机器人设备检验自己的学习成果~
    5年前 0条评论
  • 白兰兰的头像
    白兰兰
    这个人很懒,什么都没有留下~
    评论
    “人工智能”这个词一开始是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是对人的意识、思维的信息过程的模拟。人工智能开发主要学哪门语言?
    据了解,人工智能目前主要是机器学习实现的,而目前做机器学习和数据挖掘的主要语言是python。但主要原因并不是python效率高或者python和人工智能有什么不可分割的联系,而是因为python是一门很好的胶水语言,可以方便的调用别人(用各种语言)写的库,而且表达清晰灵活。
    实际上,机器学习的核心知识和python并没有本质关系,python只是因为表达能力强,所以被广泛用于机器学习开发而已。因此目前来看,Python是人工智能的首选语言。
    人工智能时代的到来,让人们不禁产生了一些思考,不管是好是坏。但是无论结果如何,这个时代究竟还是来了:
    搭台,唱戏,台下的吃瓜群众懵懂生活、不知不觉间被卷入,在技术迭代发展的洪流中,向来如此。在基础技术维度,大数据管理和云计算技术已经在国内生根发芽,从IaaS、PaaS到SaaS,逐渐转变为大众化服务的基础平台:
    腾讯、阿里、百度、华为等巨头们依托自身数据、算法、技术和服务器优势正着力构建各自的产业链闭环。而在应用技术维度,在机器学习、模式识别和人机交互三条技术路线下附着的机器视觉、指纹识别、人脸识别、智能搜索、语言和图像理解、遗传编程等众多领域,正蓬勃兴盛,也诞生了多家代表性企业。
    也因为各企业的诞生,也有越来越多的企业需要人工智能人才。所以,如果大家掌握了Python,是否就能更好地在人工智能行业大展拳脚呢?
    5年前 0条评论
  • 兔宝宝的头像
    兔宝宝
    这个人很懒,什么都没有留下~
    评论
    在推动AI产业从兴起进入快速发展的历程中,AI顶级人才的领军作用尤为重要。上至国家,下至科技巨头,无不将AI视为提升自身的核心竞争力的根本性战略。那么你有没有想过这么一个问题:人工智能开发语言哪个更好?
    其实,并不是每种编程语言,都能为开发人员节省时间及精力。在此整理了5种比较适用于人工智能开发的编程语言:
    Python
    Python由于简单易用,是人工智能领域中使用较广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。
    Java
    对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。
    Lisp
    Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,因其可用性和符号结构而主要用于机器学习/ ILP子领域。著名的AI专家彼得·诺维奇(Peter Norvig)在其《Artificial Intelligence: A modern approach》一书中,详细解释了为什么Lisp是AI开发的顶级编程语言之一。
    Prolog
    Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效,例如它提供模式匹配,自动回溯和基于树的数据结构化机制。结合这些机制可以为AI项目提供一个灵活的框架。Prolog广泛应用于AI的 expert系统,也可用于医疗项目的工作。
    C ++
    在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C ++被广泛地快速执行,游戏中的AI主要用C ++编码,以便更快地执行和响应时间。这也是一门非常不错的语言。
    6年前 0条评论
  • 海洋的头像
    海洋
    这个人很懒,什么都没有留下~
    评论
    人工智能的研究主要有三方面:一是纯理论性的,以强人工智能或者神经网络为研究方向,这样的话,本科可以选择神经科学,也可以选修心理学、哲学、计算机科学二是从算法层面对人工智能的优化,这也是大多数人现在对人工智能的理解,本科自然要学计算机科学了,但博弈论之类重视逻辑的小类别学科也有选修或者自学的必要。第三种就是工业应用的方面。楼主的认识很对,这样主要应该学习自动化和机械控制。不知楼主在国内还是国外读大学。在国外,人工智能的理论研究还是很有价值的。国内嘛就别想了。在国内,计算机是现在很火的专业不必多说。选机械控制专业的话就业前景非常好。楼主你说喜欢硬件方面科技产品设计?若不是机械控制,人工智能目前还主要是研究算法层面的。电子工程这样的硬件专业目前对人工智能还没啥应用。当然楼主有志于在国内研究神经网络那是祖国的骄傲啊^ ^ 人工智能是一门很迷人的学科。希望楼主能找到适合自己的方向好好发展,带动我国的人工智能领域哦!
    6年前 0条评论
  • Guo的头像
    Guo
    这个人很懒,什么都没有留下~
    评论

    人工智能用的编程语言:Python、Java、Lisp、Prolog、C ++、Yigo。 

    1、Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用。

    2、Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。一。

    3、Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言

    4、Prolog与Lisp在可用性方面旗鼓相当,据《Prolog Programming for ArTIficial Intelligence》一文介绍,Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效。

    5、C ++是世界上速度最快的编程语言,其在硬件层面上的交流能力使开发人员能够改进程序执行时间。 C ++对于时间很敏感,这对于AI项目是非常有用的,例如,搜索引擎可以广泛使用C ++。

    在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C ++被广泛地快速执行,游戏中的AI主要用C ++编码,以便更快的执行和响应时间。

    6年前 0条评论
  • 海洋的头像
    海洋
    这个人很懒,什么都没有留下~
    评论

    Python、Java、Lisp、Prolog、C ++、Yigo。

    Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。

    Python之所以适合AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。

    Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。

    对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。

    7年前 0条评论
  • 萱儿的头像
    萱儿
    这个人很懒,什么都没有留下~
    评论

    人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具。一系列的进展在过去的几年中发生了:无事故驾驶超过300000英里并在三个州合法行驶迎来了自动驾驶的一个里程碑;IBM Waston击败了Jeopardy两届冠军;统计学习技术从对消费者兴趣到以万亿记的图像的复杂数据集进行模式识别。这些发展必然提高了科学家和巨匠们对人工智能的兴趣,这也使得开发者们了解创建人工智能应用的真实本质。

    谷歌的AI击败了一位围棋大师,是一种衡量人工智能突然的快速发展的方式,也揭示了这些技术如何发展而来和将来可以如何发展。

    哪一种编程语言适合人工智能?

    你所熟练掌握的每一种编程语言都可以是人工智能的开发语言。人工智能程序可以使用几乎所有的编程语言实现,最常见的有:Lisp,Prolog,C/C++,近来又有Java,最近还有Python.

    LISP

    像LISP这样的高级语言在人工智能中备受青睐,因为在各高校多年的研究后选择了快速原型而舍弃了快速执行。垃圾收集,动态类型,数据函数,统一的语法,交互式环境和可扩展性等一些特性使得LIST非常适合人工智能编程。

    PROLOG

    这种语言有着LISP高层和传统优势有效结合,这对AI是非常有用的。它的优势是解决“基于逻辑的问题”。Prolog提供了针对于逻辑相关问题的解决方案,或者说它的解决方案有着简洁的逻辑特征。它的主要缺点(恕我直言)是学起来很难。

    C/C++

    就像猎豹一样,C/C++主要用于对执行速度要求很高的时候。它主要用于简单程序,统计人工智能,如神经网络就是一个常见的例子。Backpropagation 只用了几页的C/C++代码,但是要求速度,哪怕程序员只能提升一点点速度也是好的。

    JAVA

    新来者,Java使用了LISP中的几个理念,最明显的是垃圾收集。它的可移植性使它可以适用于任何程序,它还有一套内置类型。Java没有LISP和Prolog高级,又没有C那样快,但如果要求可移植性那它是最好的。

    Python

    Python是一种用LISP和JAVA编译的语言。按照Norvig文章中对Lips和Python的比较,这两种语言彼此非常相似,仅有一些细小的差别。还有JPthon,提供了访问Java图像用户界面的途径。这是PeterNorvig选择用JPyhton翻译他人工智能书籍中程序的的原因。JPython可以让他使用可移植的GUI演示,和可移植的http/ftp/html库。因此,它非常适合作为人工智能语言的。

    在人工智能上使用Python比其他编程语言的好处

    优质的文档

    平台无关,可以在现在每一个*nix版本上使用

    和其他面向对象编程语言比学习更加简单快速

    Python有许多图像加强库像Python Imaging Libary,VTK和Maya 3D可视化工具包,Numeric Python, Scientific Python和其他很多可用工具可以于数值和科学应用。

    Python的设计非常好,快速,坚固,可移植,可扩展。很明显这些对于人工智能应用来说都是非常重要的因素。

    对于科学用途的广泛编程任务都很有用,无论从小的shell脚本还是整个网站应用。

    最后,它是开源的。可以得到相同的社区支持。

    AI的Python库

    总体的AI库

    AIMA:Python实现了从Russell到Norvigs的“人工智能:一种现代的方法”的算法

    pyDatalog:Python中的逻辑编程引擎

    SimpleAI:Python实现在“人工智能:一种现代的方法”这本书中描述过的人工智能的算法。它专注于提供一个易于使用,有良好文档和测试的库。

    EasyAI:一个双人AI游戏的python引擎(负极大值,置换表、游戏解决)

    机器学习库

    PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库。它也提供了多种预定义好的环境来测试和比较你的算法。

    PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法。它支持Linux和Mac OS X。

    scikit-learn旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具。它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包(numpy,scipy.matplotlib)紧密联系在一起的。

    MDP-Toolkit这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法(主成分分析、独立成分分析、慢特征分析),流型学习方法(局部线性嵌入),集中分类,概率方法(因子分析,RBM),数据预处理方法等等。 自然语言和文本处理库

    NLTK 开源的Python模块,语言学数据和文档,用来研究和开发自然语言处理和文本分析。有windows,Mac OSX和Linux版本。

    结论

    python因为提供像 scikit-learn的好的框架,在人工智能方面扮演了一个重要的角色:Python中的机器学习,实现了这一领域中大多的需求。D3.js JS中数据驱动文档时可视化最强大和易于使用的工具之一。处理框架,它的快速原型制造使得它成为一门不可忽视的重要语言。AI需要大量的研究,因此没有必要要求一个500KB的Java样板代码去测试新的假说。python中几乎每一个想法都可以迅速通过20-30行代码来实现(JS和LISP也是一样)。因此,它对于人工智能是一门非常有用的语言。

    案例

    做了一个实验,一个使用人工智能和物联网做员工行为分析的软件。该软件通过员工情绪和行为的分心提供了一个有用的反馈给员工,从而提高了管理和工作习惯。

    使用Python机器学习库,opencv和haarcascading概念来培训。建立了样品POC来检测通过安置在不同地点的无线摄像头传递回来基础情感像幸福,生气,悲伤,厌恶,怀疑,蔑视,讥讽和惊喜。收集到的数据会集中到云数据库中,甚至整个办公室都可以通过在Android设备或桌面点击一个按钮来取回。

    开发者在深入分析脸部情感上复杂点和挖掘更多的细节中取得进步。在深入学习算法和机器学习的帮助下,可以帮助分析员工个人绩效和适当的员工/团队反馈。

    7年前 0条评论
点击加载更多
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部