啥是人工智能?人工智能有哪些应用领域?

张艳 美股 65

回复

共46条回复 我来回复
  • 史努比的头像
    史努比
    这个人很懒,什么都没有留下~
    评论
    一、制造
    智能制造,是在基于互联网的物联网意义上实现的包括企业与社会在内的全过程的制造,把工业4.0的“智能工厂”、“智能生产”、“智能物流”进一步扩展到“智能消费”、“智能服务”等全过程的智能化中去,只在这些意义上,才能真正地认识到我们所面临的前所未有的形势。人工智能在制造业的应用主要有三个方面:首先是智能装备,包括自动识别设备、人机交互系统、工业机器人以及数控机床等具体设备。其次是智能工厂,包括智能设计、智能生产、智能管理以及集成优化等具体内容。最后是智能服务,包括大规模个性化定制、远程运维以及预测性维护等具体服务模式。虽然目前人工智能的解决方案尚不能完全满足制造业的要求,但作为一项通用性技术,人工智能与制造业融合是大势所趋。
    二、家居
    智能家居主要是基于物联网技术,通过智能硬件、软件系统、云计算平台构成一套完整的家居生态圈。用户可以进行远程控制设备,设备间可以互联互通,并进行自我学习等,来整体优化家居环境的安全性、节能性、便捷性等。值得一提的是,近两年随着智能语音技术的发展,智能音箱成为一个爆发点。智能音箱不仅是音响产品,同时是涵盖了内容服务、互联网服务及语音交互功能的智能化产品,不仅具备WiFi连接功能,提供音乐、有声读物等内容服务及信息查询、网购等互联网服务,还能与智能家居连接,实现场景化智能家居控制。
    二、金融
    人工智能的产生和发展,不仅促进金融机构服务主动性、智慧性,有效提升了金融服务效率,而且提高了金融机构风险管控能力,对金融产业的创新发展带来积极影响。人工智能在金融领域的应用主要包括:智能获客、身份识别、大数据风控、智能投顾、智能客服、金融云等,该行业也是人工智能渗透最早、最全面的行业。未来人工智能将持续带动金融行业的智能应用升级和效率提升。
    四、零售
    人工智能在零售领域的应用已十分广泛,正在改变人们购物的方式。无人便利店、智慧供应链、客流统计、无人仓/无人车等等都是的热门方向。通过大数据与业务流程的密切配合,人工智能可以优化整个零售产业链的资源配置,为企业创造更多效益,让消费者体验更好。在设计环节中,机器可以提供设计方案;在生产制造环节中,机器可以进行全自动制造;在供应链环节中,由计算机管理的无人仓库可以对销量以及库存需求进行预测,合理进行补货、调货;在终端零售环节中,机器可以智能选址,优化商品陈列位置,并分析消费者购物行为。
    五、交通
    大数据和人工智能可以让交通更智慧,智能交通系统是通信、信息和控制技术在交通系统中集成应用的产物。通过对交通中的车辆流量、行车速度进行采集和分析,可以对交通进行实施监控和调度,有效提高通行能力、简化交通管理、降低环境污染等。人工智能还可为我们的安全保驾护航。人长时间开车会感觉到疲劳,容易出交通事故,而无人驾驶则很好地解决了这些问题。无人驾驶系统还能对交通信号灯、汽车导航地图和道路汽车数量进行整合分析,规划出最优交通线路,提高道路利用率,减少堵车情况,节约交通出行时间。
    六、安防
    安防领域涉及到的范围较广,小到关系个人、家庭,大到跟社区、城市、国家安全息息相关。目前智能安防类产品主要有四类:人体分析、车辆分析、行为分析、图像分析;在安防领域的应用主要通过图像识别、大数据及视频结构化等技术进行作用的;从行业角度来看,主要在公安、交通、楼宇、金融、工业、民用等领域应用较广。
    七、医疗
    当下人工智能在医疗领域应用广泛,从最开始的药物研发到操刀做手术,利用人工智能都可以做到。眼下,医疗领域人工智能初创公司按领域可划分为八个主要方向,包括医学影像与诊断、医学研究、医疗风险分析、药物挖掘、虚拟护士助理、健康管理监控、精神健康以及营养学。其中,协助诊断及预测患者的疾病已经逐渐成为人工智能技术在医疗领域的主流应用方向。
    八、教育
    通过图像识别,可以进行机器批改试卷、识题答题等;通过语音识别可以纠正、改进发音;而人机交互可以进行在线答疑解惑等。AI 和教育的结合一定程度上可以改善教育行业师资分布不均衡、费用高昂等问题,从工具层面给师生提供更有效率的学习方式,但还不能对教育内容产生较多实质性的影响。
    九、物流
    物流行业通过利用智能搜索、 推理规划、计算机视觉以及智能机器人等技术在运输、仓储、配送装卸等流程上已经进行了自动化改造,能够基本实现无人操作。比如利用大数据对商品进行智能配送规划,优化配置物流供给、需求匹配、物流资源等。目前物流行业大部分人力分布在“最后一公里”的配送环节。
    2年前 0条评论
  • 果果的头像
    果果
    这个人很懒,什么都没有留下~
    评论

    1、自动驾驶:

    自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。

    汽车自动驾驶技术包括视频摄像头、雷达传感器以及激光测距器来了解周围的交通状况,并通过一个详尽的地图(通过有人驾驶汽车采集的地图)对前方的道路进行导航。

    2、人脸识别:

    人脸识别系统成功的关键在于是否拥有尖端的核心算法,并使识别结果具有实用化的识别率和识别速度。

    “人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。

    3、人工智能:

    该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

    4、手机触摸屏:

    触控屏(Touch panel)又称为触控面板,是个可接受触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种联结装置,可用以取代机械式的按钮面板,并借由液晶显示画面制造出生动的影音效果。

    5、VR技术:

    虚拟现实是多媒体技术的终极应用形式,它是计算机软硬件技术、传感技术、机器人技术、人工智能及行为心理学等科学领域飞速发展的结晶。主要依赖于三维实时图形显示、三维定位跟踪、触觉及嗅觉传感技术、人工智能技术。

    2年前 0条评论
  • 烁烁的头像
    烁烁
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
    人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 2017年12月,人工智能入选“2017年度中国媒体十大流行语”。 2021年9月25日,为促进人工智能健康发展,《新一代人工智能伦理规范》发布。
    2年前 0条评论
  • 希希的头像
    希希
    这个人很懒,什么都没有留下~
    评论

    对人工智能的理解

    人工智能可分开理解为“人工”和“智能”,即人类创造出来的智能,从广义上来讲只要人类创造出来,能为人类工作减少人类操作步骤,提高工作效率,代替人类工作的都可以归为人工智能.

    从狭义上来讲,是人工智能是人类创造出来,类似人类一样,能够通过学习,逐渐变得聪明,最终能够像人一样思考,能够做出正确的判断的机器人,甚至比人类更聪明。

    现在人工智能成为一个热门话题,但是目前人工智能还很遥远,但是社会发展总是惊人的,说不定某一天睁开眼就看到了智能化的世界,或许只要眨眨眼睛,动动手指就能得到你想要的,或者是应为你的生活习惯,你想要的会在固定的时间,固定的地点出现。

    2年前 0条评论
  • 小鱼儿的头像
    小鱼儿
    这个人很懒,什么都没有留下~
    评论
    人工智能在交通出行领域、家庭家居领域、公共安全领域、手机及互联网娱乐领域以及医疗健康领域都为人们带来了便利。

    1、交通出行领域:
    共享单车、共享电车、共享汽车方便了出行,让出行成本降低。智能辅助驾驶系统帮助人们安全驾驶,安全出行。
    2、家庭家居领域:
    智能互联家居在现在生活中应用广泛,它能够帮助人们对生活环境进行智能调控,对房屋进行安全监测、危险预警等,减少了煤气泄露、房屋被盗的风险。一句话打开音乐,一句话打开空调,一句话让生活变得很简单。
    3、公共安全领域:
    人脸、指纹、虹膜等生物特征的识别和大数据的结合,再进行实时监测,人工智能的应用能够加强公安系统的管理和安全预测。由大数据和人工智能构建起来的智慧城市工程,对城市公共安全领域。
    4、手机及互联网娱乐领域:
    人们接触最多的人工智能领域的应用来自于手机及互联网。手机的语音助手、实时翻译功能、图片文字智能识别提取、听歌识曲、刷脸解锁、拍照优化、相册分类、影像处理、AR特效、VR游戏等等,都不同程度的应用到了人工智能技术。

    想了解更多有关人工智能的详情,推荐咨询达内教育。达内教育独创TTS8.0教学系统,达内OMO教学模式,全新升级,线上线下交互学习,满足学生多样化学习需求;同时,拥有经验丰富的讲师进行课程的讲授,对标企业人才标准,制定专业学习计划,囊括主流热点技术,运用理论知识+学习思维+实战操作,打造完整学习闭环;更有企业双选会,让学生就业更顺利。感兴趣的话点击此处,免费学习一下

    2年前 0条评论
  • 涵涵妈妈的头像
    涵涵妈妈
    这个人很懒,什么都没有留下~
    评论
    人工智能的理解可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步等等。对【人工智能】的认识:研究让计算机具备模拟、延伸和扩展人的智能的一门技术科学。主要是来源于大量的数据来使机器学习能比人更快的计算出结果。

    人工智能是研究使计算机来模拟人的某些思维过程和智能行为的学科,主要包括【计算机】实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。

    更多关于人工智能的相关知识,建议到达内教育了解一下。达内教育由来自SUN、IBM、亚信、华为、东软、用友等国际知名IT公司的技术骨干、海外留学生和加拿大专业技术人员创办,直接引进北美IT技术,结合中国IT企业的现状,定制化培养高端IT人才。课程穿插大厂真实项目讲解,理论知识+学习思维+实战操作,打造完整学习闭环。实战讲师经验丰富多种班型任你选择,1v1督学,跟踪式学习, 有疑问随时沟通。

    2年前 0条评论
  • 苑利平的头像
    苑利平
    这个人很懒,什么都没有留下~
    评论

    人工智能的应用领域有:智能医疗、智能交通、智能农业、智能教育、智能家具、智能工厂等等很多领域。下面将详细的介绍几个人工智能的领域:

    1.     智能医疗

    人工智能在医疗的应用领域里有AI医学影像、AI辅助诊断、AI药物开发、AI疾病预测。人工智能在医疗领域里广泛的运用当中,“AI +医疗”这两者的结合。

    智能医疗

    2.     智能农业

    正所谓“强国必先农强,农强方能国强”。在如今人口众多的中国来说,农业可谓是一个极大的发展领域。灌溉技术、科技感强的实验室、牧场智能养牛技术、智能温室、机械工具等等。农业中高科技的无人机将会完成喷洒任务,智能机器人种地技术、智能化养鸡、指挥水产、环境监测等众多领域都死人工智能在发挥着强大的“领导作用”。

    3.     智能教育

    教育是文化的传承,是知识的传递。校园当中人工智能随处可见,校园中智能化的应用可谓是科技感十足,令人赞叹不绝。人工智能踏进校园门口之后,可以激发学生的学习能力,培养兴趣,同时人工智能可以满足学生个性化的要求。

    智能教育

    2年前 0条评论
  • 宋媛丽的头像
    宋媛丽
    这个人很懒,什么都没有留下~
    评论

    人工智能可以包括以下领域:金融,可以产生大量数据的行业;安防,比较关键的人工智能技术是人脸识别;大健康,是疫情大环境下的基本操作;智能驾驶,自动驾驶系统,算法,激光雷达等;企业服务,数据为王;机器人,在智能制造领域可谓是一大助力等等。

    1、金融

    在智能金融领域,人工智能主要应用于四大领域:保险科技、智能风控、智能投顾和智能投研。在这个可以产生大量数据的行业,实在太适合人工智能了,针对金融风控、营销等领域的人工智能产品层出不穷,数据分析师这个职业也在金融领域发光发热。 

    2、安防 

    在智能安防领域,人工智能主要应用于五大领域:身份认证系统、智能摄像机、车辆大数据、视频分析和家庭安防。在智能安防领域,其中比较关键的人工智能技术是人脸识别,可以直接应用在安防中。

    3、大健康(智能医疗) 

    在AI+大健康领域,人工智能主要应用于六大领域:智能影像诊疗、医学数据挖掘、智能问诊、语音电子病历、健康管理、药物挖掘。像医院里常见的X光、CT、MRI等医学影像,都会用到AI,像新冠疫苗研发,病毒研究等,那更是疫情大环境下的基本操作了。

    2年前 0条评论
  • 请填写的头像
    请填写
    这个人很懒,什么都没有留下~
    评论

    ??随着科技的不断发展,AI(人工智能)已经渗入到人们的日常生活中。

    人工智能从诞生到进入我们的生活,经过了一段漫长的时间。从1956年开始,人类开始畅想制造更多具备感知、认知、智力、直觉、创造力、情感、共情能力的机器,它们能自动完成通常认为只有人类才能执行的任务。

    现在人工智能已经初步完成了人们的设想,智能手机中的AI,从一句话查天气查新闻,再到背后图片处理、游戏性能的优化;智能穿戴设备,不仅能协助工作生活,还能时刻监测人体的健康数据;智能家电,极大地提升了居家的生活质量;

    ?人工智能已经变成了“日常必需品”。

    人工智能的广泛应用,比如智能家居、智能机器人、手机的指纹识别以及人脸识别等等一些列智能设备的出现,既能够很好地促进社会经济的繁荣发展,还可以为人们的日常生活提供很多便捷。在将来,智能辅助机器人可以帮助那些行动不便的老年人做家务、带来更好的娱乐。

    ?人工智能使生活更便捷高效

    从我们出行方面表现最明显,当我们要去某一个地方,打开导航就会给你规划最合理的路线,避免拥堵。扫地机器人的出现,可以帮助我们打扫家里的卫生,从而把我们从繁琐劳累的家务中解救出来。自动驾驶技术的出现,可以把我们从劳累的驾驶中解救出来,同时还能有效降低交通事故的发生率。智能挖掘机可以24小时不断的作业,完成高强度、高难度的作业。这正是人工智能带来的便捷与高效。

    ?人工智能使我们更智慧

    人工智能可以提升医疗诊断准确率,人工智能可以帮助揭露保险金融诈骗,人工智能还能帮助寻找失踪儿童。

    随着科技的深入,智能化的程度会越来越高,我们在享受科技带来的便利的同时,也在承担着科技带了的压力。我们在提升自己,以适应不断变革的科技革命

    2年前 0条评论
  • 小白杨的头像
    小白杨
    这个人很懒,什么都没有留下~
    评论
    人工智能之父 John McCarthy说:人工智能就是制造智能的机器,更特指制作人工智能的程序。人工智能模仿人类的思考方式让计算机能智能的思考问题,人工智能通过研究人类大脑的思考、学习和工作方式,然后将研究结果作为开发智能软件和系统的基础。

    人工智能的概念很宽,所以人工智能也分很多种,我们按照人工智能的实力将其分成三大类:
    1、弱人工智能
    弱人工智能Artificial Narrow Intelligence (ANI):弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。比如第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,Alpha Go其实也是一个弱人工智能。
    2、强人工智能
    强人工智能又称通用人工智能或完全人工智能, 指的是可以胜任人类所有工作的人工智能。一个可以称得上强人工智能的程序, 大概需要具备以下几方面的能力:存在不确定因素时进行推理,使用策略,解决问题,制定决策的能力;知识表示的能力,包括常识性知识的表示能力;规划能力;学习能力;使用自然语言进行交流沟通的能力;将上述能力整合起来实现既定目标的能力。
    3、超人工智能
    假设计算机程序通过不断发展,可以比世界上最聪明、最有天赋的人类还聪明,那么由此产生的人工智能系统就可以被称为超人工智能。超人工智能的定义最为模糊,因为没人知道, 超越人类最高水平的智慧到底会表现为何种能力。如果说对于强人工智能,我们还存在从技术角度进行探讨的可能性的话,那么,对于超人工智能,今天的人类大多就只能从哲学或科幻的角度加以解析了。

    2年前 0条评论
  • 小鱼儿的头像
    小鱼儿
    这个人很懒,什么都没有留下~
    评论
    人工智能 (AI) 是指可模仿人类智能来执行任务,并基于收集的信息对自身进行迭代式改进的系统和机器。
    AI 就是与人类思考方式相似的计算机程序。
    AI 就是能遵照思维里的逻辑规律进行思考的计算机程序。
    AI 就是与人类行为相似的计算机程序。
    AI 就是会学习的计算机程序。
    AI 就是根据对环境的感知,做出合理的行动,并获得最大收益的计算机程序。
    人工智能大致有10个方向的应用:
    1、个性化推荐;
    2、人脸识别;
    3、无人驾驶汽车;
    4、智能客服聊天机器人;
    5、机器翻译;
    6、医学图像处理;
    7、图像搜索;
    8、声纹识别;
    9、智能外呼机器人;
    10、智能音箱。
    2年前 0条评论
  • 陈婉茹的头像
    陈婉茹
    这个人很懒,什么都没有留下~
    评论

    人工智能是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。在大众眼中,人工智能是 “人造出来的,像人的智能”,比如Siri。同时,一个AI的水平高低,则取决于它有多像人。所以当Sophia出现在公众眼中的时候,普通人会很容易被蒙蔽(甚至能通过图灵测试)。

    人工智能的工作原理是:计算机会通过传感器(或人工输入的方式)来收集关于某个情景的事实。计算机将此信息与已存储的信息进行比较,以确定它的含义。计算机会根据收集来的信息计算各种可能的动作,然后预测哪种动作的效果最好。计算机只能解决程序允许解决的问题,不具备一般意义上的分析能力。

    扩展资料

    人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟。

    应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

    参考资料来源:百度百科-人工智能

    2年前 0条评论
  • 小白杨的头像
    小白杨
    这个人很懒,什么都没有留下~
    评论
    人工智能的主要应用领域有:1、强化学习领域;2、生成模型领域;3、记忆网络领域;4、数据学习领域;5、仿真环境领域;6、医疗技术领域;7、教育领域;8、物流管理领域。

    1、强化学习领域

    强化学习是一种通过实验和错误来学习的方法,它受人类学习新技能的过程启发。在典型的强化学习案例中,我们让试验者通过观察当前所处的状态,进而采取行动使得反馈结果最大化。每执行一次动作,试验者都会收到来自环境的反馈信息,因此它能判断这次动作带来的效果是积极的还是消极的。

    2、生成模型领域

    人工智能通过对众多样本的采集,生成的模型具有很强的相似性。这就是说,若训练数据是脸部的图像,那么训练后得到的模型也是类似于脸的合成图片。

    人工智能顶级专家 Ian Goodfellow为我们提出两种新思路:一个是生成器,它负责将输入的数据合成为新的内容;另一个是判别器,负责判断生成器生成内容的真假。这样一来,生成器必须反复学习合成的内容,直到判别器无法区分生成器内容的真伪。

    3、记忆网络领域

    为了让人工智能系统像人类一样适应各式各样的环境,它们必须持续不断地掌握新技能,并且学会应用这些技能。传统的神经网络很难做到这些要求。比如,当一个神经网络对A任务完成训练后,若是再训练它解决B任务,则网络模型就不再适用于A了。

    目前,有一些网络结构能够让模型具备不同程度的记忆能力。长短期记忆网络可以处理和预测时间序列;渐进式神经网络,它学习各个独立模型之间的横向联系并提取共同的特征,以此来完成新的任务。

    4、数据学习领域

    一直以来,深度学习模型都是我们需要用大量的训练数据才能达到最佳的效果。离开大规模的训练数据,深度学习模型就不会达到最理想的效果。比如,当我们用人工智能系统解决数据缺乏的任务时,这时就会出现各种各样的问题。有种被称为迁移学习的方法,就是把训练好的模型迁移到新的任务中,这样问题就迎刃而解了。

    5、仿真环境领域

    若要将人工智能系统应用到实际生活中,那么人工智能必须具有适用性的特点。因此,开发数字环境来模拟真实的物理世界和行为,将为我们提供测试人工智能的机会。在这些模拟环境中的训练可以帮助我们很好的了解人工智能系统的学习原理,如何改进系统,也为我们提供了可以应用于真实环境的模型。

    6、医疗技术领域

    目前,在垂直领域的图像算法和自然语言处理技术已可基本满足医疗行业的需求,市场上出现了众多技术服务商,例如提供智能医学影像技术的德尚韵兴,研发人工智能细胞识别医学诊断系统的智微信科,提供智能辅助诊断服务平台的若水医疗,统计及处理医疗数据的易通天下等。尽管智能医疗在辅助诊疗、疾病预测、医疗影像辅助诊断、药物开发等方面发挥重要作用,但由于各医院之间医学影像数据、电子病历等不流通,导致企业与医院之间合作不透明等问题,使得技术发展与数据供给之间存在矛盾。

    7、教育领域

    科大讯飞、乂学教育等企业早已开始探索人工智能在教育领域的应用。通过图像识别,可以进行机器批改试卷、识题答题等;通过语音识别可以纠正、改进发音;而人机交互可以进行在线答疑解惑等。AI 和教育的结合一定程度上可以改善教育行业师资分布不均衡、费用高昂等问题,从工具层面给师生提供更有效率的学习方式,但还不能对教育内容产生较多实质性的影响。

    8、物流管理领域

    物流行业通过利用智能搜索、 推理规划、计算机视觉以及智能机器人等技术在运输、仓储、配送装卸等流程上已经进行了自动化改造,能够基本实现无人操作。比如利用大数据对商品进行智能配送规划,优化配置物流供给、需求匹配、物流资源等。目前物流行业大部分人力分布在“最后一公里”的配送环节,京东、苏宁、菜鸟争先研发无人车、无人机,力求抢占市场机会。

    2年前 0条评论
  • 辛巴的头像
    辛巴
    这个人很懒,什么都没有留下~
    评论
    人工智能的主要应用领域有:1.强化学习领域;2.生成模型字段;3.内存网络领域;4.数据学习领域;5.模拟环境领域;6.医疗技术领域;7.教育领域;8.物流管理领域。

    1.加强学习领域

    强化学习是一种通过实验和错误进行学习的方法,它受到人类学习新技能过程的启发。在强化学习的典型案例中,我们要求参与者采取行动,通过观察当前情况来最大化反馈结果。每次你执行一个动作,实验者都会收到环境的反馈,所以它可以判断这个动作的效果是积极的还是消极的。

    2.生成模型字段

    通过大量样本的收集,人工智能生成的模型具有很强的相似性。也就是说,如果训练数据是人脸的图像,那么训练后得到的模型也是类似人脸的合成图像。

    人工智能顶级专家Ian Goodfellow为我们提出了两个新思路:一个是生成器,负责将输入的数据合成新的内容;另一个是鉴别器,负责判断生成器生成的内容是真是假。这样,生成器必须反复学习合成的内容,直到鉴别器无法辨别生成器内容的真实性。

    3.存储网络字段

    人工智能系统要像人类一样适应各种环境,就必须不断掌握新的技能并学会应用。传统的神经网络很难满足这些要求。比如一个神经网络训练完A任务后,如果训练它去解决B任务,那么这个网络模型就不再适合A了。

    目前有一些网络结构可以使模型具有不同程度的记忆能力。长短期记忆网络可以处理和预测时间序列;渐进神经网络学习独立模型之间的水平关系,提取共同特征,可以完成新的任务。

    4.数据学习领域

    一直以来,深度学习模式都是需要大量的训练数据才能达到最好的效果。没有大规模的训练数据,深度学习模型不会取得最好的效果。例如,当我们使用人工智能系统解决缺乏数据的任务时,会出现各种问题。有一种方法叫迁移学习,就是把训练好的模型转移到一个新的任务上,这样问题就很容易解决了。

    5.仿真环境领域

    如果人工智能系统要应用于现实生活,那么人工智能必须具有适用性的特点。因此,开发模拟真实物理世界和行为的数字环境,将为我们提供检验人工智能的机会。在这些仿真环境中进行训练,可以帮助我们很好地理解人工智能系统的学习原理以及如何改进系统,也为我们提供了一个可以应用到真实环境中的模型。

    6.医疗技术领域

    目前垂直领域的图像算法和自然语言处理技术基本能够满足医疗行业的需求,市场上已经出现了很多技术服务商,比如提供智能医学影像技术的尚德云星、开发人工智能细胞识别医疗诊断系统的智维信分公司、提供智能辅助诊断服务平台的若水医疗、统计处理医疗数据的一通天下等。虽然智能医疗在辅助诊疗、疾病预测、医学影像辅助诊断、药物开发等方面发挥着重要作用。由于医院之间缺乏医学影像数据和电子病历的流通,企业与医院之间的合作不透明,这就使得技术发展与数据供给之间产生矛盾。

    7.教育领域

    科大讯飞、学校教育等企业已经开始探索人工智能在教育领域的应用。通过图像识别,可以进行试卷批改、识题、机器答题等。通过语音识别可以纠正和改善发音;人机交互可以在线回答问题。AI+教育,可以在一定程度上改善教育行业师资分布以及成本问题,从工具层面为师生提供更高效的学习方式,但无法对教育内容产生更实质性的影响。

    8.物流管理领域

    物流行业利用智能搜索、推理规划、计算机视觉、智能机器人等技术,在配送、装卸、运输、仓储等过程中进行了自动化改造,基本可以实现无人化作业。比如利用大数据对商品进行智能配送规划,优化物流供给、需求匹配、物流资源的配置等。

    2年前 0条评论
  • 胡行娟的头像
    胡行娟
    这个人很懒,什么都没有留下~
    评论
    你好,人工智能,从字面上理解就是用人制造的智能化机械或设备。就是人类设计制造的,具有模拟人类行为的工具。
    现代社会,人工智能正在从过去的科幻世界走进现实中来。这是人类科技进步的象征,也是人类智慧的结晶。
    人工智能在很多方面可以替代人类工作。比如高危险的工作,高空作业、腐蚀性强、电磁辐射、高温环境、水下等人类无法到达或无法完成的工作。
    人工智能的崛起,给人们的生活、工作带来了极大的方便,甚至推动了人类社会进步发展的高潮。
    比如纳米医用机械人的出现,促进了现代医疗的进步,使过去的不可能变成了可能,在不用开刀、不用吃药、在最小的损伤、最短的时间内就可以挽救一个生命。
    人工智能正在改变人类,同时也给人类带来了负面影响。未来人类如果广泛使用人工智能,可能导致大量人类失去工作机会,还会导致人类的动手能力下降,可能导致人类变懒。
    但是,人工智能给人类未来的影响是深远和积极的,是人类未来的总体趋势。
    2年前 0条评论
  • 张宁的头像
    张宁
    这个人很懒,什么都没有留下~
    评论

    人工智能(Artificial Intelligence,AI)是指计算机像人一样拥有智能能力,是一个融合计算机科学、统计学、脑神经学和社会科学的前沿综合学科,可以代替人类实现识别、认知,分析和决策等多种功能。如当你说一句话时,机器能够识别成文字,并理解你话的意思,进行分析和对话等。

    人工智能的起源:人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。按照图灵的设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。而就在这一年,图灵还大胆预言了真正具备智能机器的可行性。

    1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看做是人工智能正式诞生的标志。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MIT AI LAB实验室。值得追的是,茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现。达特茅斯会议被广泛认为是人工智能诞生的标志,从此人工智能走上了快速发展的道路。

    人工智能的第一次高峰 在1956年的这次会议之后,人工智能迎来了属于它的第一段Happy Time。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”

    因此,人工智能项目停滞不前,但却让一些人有机可乘,1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。

    2年前 0条评论
  • 小南的头像
    小南
    这个人很懒,什么都没有留下~
    评论

    一句话说:人工智能是机器模仿人类利用知识完成一定行为的过程

    人工智能可以分为弱智能和强智能,区分点是:是否能真正实现推理、思考、解决问题

    人工智能

    按程度可以分为人工智能、机器学习、深度学习。

    机器学习是利用已有数据,得出某种模型,利用模型预测结果

    深度学习是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据

    希望本回答可以帮助到你

    望采纳~

    2年前 0条评论
  • nanazhangdege的头像
    nanazhangdege
    这个人很懒,什么都没有留下~
    评论

    它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。

    例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的。

    人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。

    相关内容:

    人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。

    但总的来说,“人工系统”就是通常意义下的人工系统。

    人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。

    人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。

    从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学。

    数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

    2年前 0条评论
  • 孙鹏的头像
    孙鹏
    这个人很懒,什么都没有留下~
    评论
    简而言之,人工智能就是用人造的方法模拟智能。

    这里包含两个关键概念,一个是“人造”,另一个就是“智能”。

    “人造”好理解,就是用人工的方法去模拟。但是“智能”是什么呢?

    在回答什么是“智能”前,让我们先看看以下哪个物品有智能:

    第一排很好判断,大家都认为它们是有智能的。

    那第二排的呢?

    1. 向日葵有智能吗?它可以跟随太阳移动。

    2. 搜索引擎有智能吗?它能把输入问题的答案列出来,比如:输入“著名的餐馆”,他可以给出著名餐馆的列表。

    3. 抽水马桶有智能吗?它在放水后能够知道何时停止放水,转而进行蓄水,当蓄满的时候又知道何时停止蓄水。

    第二排的物品(向日葵、搜索引擎、抽水马桶)和第一排的物品(现代人类、智人、猫)都有个共同之处,那就是: 它们能够根据外部环境的变化,从而自发的改变自己。

    比如:向日葵可以根据太阳的移动而移动自己的花盘;搜索引擎可以根据用户的不同输入展示不同的结果;抽水马桶可以根据水位来决定自己是放水还是蓄水,还是停止。

    进一步的一个问题是,同样都可以根据外部环境改变而自发的改变自己,那么这两排的物品有什么不同吗?

    这个区别还是很明显的,那就是: 在面对外部环境新的变化的时候,是否可以自主学习、理解环境,从而在新的外部环境下自发改变自己?

    第二排的物品都是为了某些特定情景提前设定好的,如果跳出这个特点情景,它们就不会有任何自发行为。

    比如:向日葵只是在发芽到花盘盛开前的这段时间是随着太阳移动的。搜索引擎也是通过事先计算好的关键字对应关系来呈现结果。最后的抽水马桶只是为了冲水这一件事情设计的。它们都不会对新的情景产生新的动作。

    “智能”通常具备以下两个特征:

    1. 根据外部环境的状态变化,而自发的决定自己的状态。

    2. 在面对新的外部环境的时候,可以自己学习、理解环境,从而在新的环境状态下自发决定自己的状态。

    根据这两个特征,第一排的物品是有智能的,而第二排的物品是没有智能的,只是有“功能”。

    人工智能就是用人造的方法模拟智能,模拟的智能能达到智能物品的两个特征即可。

    目前大家已知的智能物中,人类是被认为智能最强的。那么有没有什么方法来判断人造智能物是否达到了人类智能的级别?

    著名的现代计算机之父图灵曾经提出过一个思想实验,能通过这个实验的,就被认为拥有人类智能的级别。这个思想实验也被称为 “图灵测试” 。

    图灵测试是这样的,一个人和一个机器在隔开的情况下,通过一些装置(如键盘)向这个机器随意提问,进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这个机器就通过了测试,被认为拥有人类级别的智能。

    在图灵测试中,图灵并没有检验机器是否有合作、分工、演化、自由意志等因素,只是单纯的检测机器是否有足够的智能。但是这并没有妨碍哲学家讨论这些问题,哲学家认为,如果这些因素机器都能满足,那么这种智能叫强人工智能,如果不满足这些因素,而仅仅是通过了图灵测试,那么是一种弱人工智能。

    目前在人工智能领域还没有一种机器(或系统)能通过图灵测试。

    “智能”有一个特征就是在面对新的外部环境的时候,可以自己学习、理解环境,从而在新的环境状态下决定自己的状态。那么要如何才能学习呢?

    人类的学习方法是这样的:从一个问题的一些经验中进行归纳、演绎、联想,得出结论,进一步将结论用于解决这一类的问题上,在这个推广过程中不断利用上述步骤修正结论。人类的经验非常丰富,这些经验有的成为了全人类的一些共识,这使得人类的学习速度加快。

    那么如果是一个机器呢,我们该如何让一个机器学习?它能学习到什么程度?

    一个模拟人类学习的方法是: 给机器输入关于这个问题的数据,利用一些数学方法让机器根据这些数据做归纳、演绎,从而得出结论,再利用这个结论解决这一类的问题 。这个过程,称为机器学习。

    在机器学习中,得出的结论有个特定的名称,叫做“模型”;让机器根据数据做归纳、演绎的过程叫做“模型训练”;将模型用于解决这类问题的过程,叫做“泛化”。整个过程如下图所示:

    人们利用泛化结果的好坏来评价学习的模型的好坏。

    机器学习由于其方法的普适性和解决问题的泛化能力,被很多领域都广泛使用。目前,机器学习的成功已经广泛使用在很多方面。比如: 判断一封电子邮件是否是垃圾邮件,一些新闻资讯类App自动呈现用户感兴趣的内容,根据诊断结果判断一些病的患病几率,自动驾驶,和人类对弈围棋且战胜人类,图片中的一些元素的识别,语音翻译,虚拟个人助理等等。随着机器学习在这些应用领域的不断使用,机器也在不断优化自己的结果,从而不断提高机器学习的质量和效果。

    照这个趋势下去,机器会超越人类吗?

    机器学习和人类学习相比,机器学习还有以下几个硬伤:

    1. 缺少跳跃式的建模。

    目前机器学习的建模方法是逐步递进的,缺少了一些跳跃式的前进。人类经常有灵光一现等想象力飞跃的时刻,但是机器学习没有,它只有层层递进,逐步收敛,最终得到模型。

    2. 计算能力还不够强

    虽然比人脑单个神经元的计算速度快,但是人脑的并行计算能力远超现代计算机好几个量级。人脑可以同时有上亿个神经元被激活,参与计算。相比之下,机器的计算力有限,如果计算机目前的体系结构在未来保持不变,那机器在未来也没可能超越人类的计算能力。

    3. 知识储备不足

    人类的学习有个重要的来源就是人类共有的知识,这些知识给人类理解和学习问题提供基础,有时即便问题信息不足,人类依然可以利用这些知识来学习、梳理问题。而每个机器有自己学习到的模型,目前还不能将这些模型让其他机器共享。这也正是机器学习在很多领域很难达到人类水平的一个原因,比如:自然语言处理。

    4. 不能举一反三

    机器学习不能脱离要解决的实际问题,得出的模型也只是在这类实际问题中得到有限的泛化能力。这就限制了机器能像人类一样拥有举一反三的能力,只能一个个的学习。这就缺少了面对环境变化后的自主学习能力。

    综合来看,机器学习要想超越人类,需要解建模方法、决计算力、知识共享,举一反三这四个问题。目前还不能超越人类,只能在一些高度结构化而且频繁重复某些模式的领域才能适用。

    到此,我们宏观的了解了什么是人工智能,以及它的长处和短处,希望能对想要了解人工智能领域的人起到帮助。

    2年前 0条评论
  • 洋洋妈的头像
    洋洋妈
    这个人很懒,什么都没有留下~
    评论

    人工智能它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

    人工智能定义详解:

    人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

    2年前 0条评论
点击加载更多
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部