人工智能需要学什么?大数据属于人工智能吗?

唐莹 美股 83

回复

共22条回复 我来回复
  • yanlang的头像
    yanlang
    这个人很懒,什么都没有留下~
    评论

    人工智能需要学的有高等数学,线性代数,概率论数理统计等。

    首先需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析,其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

    然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少,人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。人工智能专业的主要领域是:机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。

    人工智能专业发展历史:

    2018年4月3日,中国高校人工智能人才国际培养计划启动仪式在北京大学举行。教育部将进一步完善中国高校人工智能学科体系,在研究设立人工智能专业,推动人工智能一级学科建设。教育部在研究制定《高等学校引领人工智能创新行动计划》,通过科教融合、学科交叉、进一步提升高校人工智能科技创新能力和人才培养能力。

    2018年4月8日,西安交通大学人工智能拔尖人才培养试验班宣告成立,将于2018年面向全国招生。每年计划招生40人左右,高考招生选拔15人左右,校内新生选拔15人左右,少年班再选拔10人左右。

    2年前 0条评论
  • 刘雨菥的头像
    刘雨菥
    这个人很懒,什么都没有留下~
    评论

    1.人工智能要学哪些专业课程数据科学与大数据专业和人工智能专业的必修基础课程方面一般包含大数据(人工智能)概论、Linux操作系统、Java语言编程、数据库原理与应用、数据结构、数学及统计类课程(高等数学、线性代数、概率论、数理统计)。

    2.大数据应用开发语言、Hadoop大数据技术、分布式数据库原理与应用、数据导入与预处理应用、数据挖掘技术与应用、大数据分析与内存计算等。选修的课程方面数据可视化技术、商务智能方法与应用、机器学习、人工智能技术与应用等。实践应用课程方面海量数据预处理实战、海量数据挖掘与可视化实战等。

    3.数据科学与大数据技术与人工智能专业可从事的岗位有:分析类,分析工程师、算法工程师;研发类,架构工程师、开发工程师、运维工程师;管理类,产品经理、运营经理。

    2年前 0条评论
  • 郑继贤的头像
    郑继贤
    这个人很懒,什么都没有留下~
    评论
    1:大数据本质上是对海量数据进行归类分析,就像用筛子一样在筛选需要的东西,在对数据归类后,进行数据分析。
    而现在主流人工智能算法用的都是深度学习,深度学习的作用就是从中把知识提取出来,大数据是人工智能的开始,大数据加深度算法,等于人工智能,要想实现人工智能,除开大数据技术之外,还需要其他元素的配合。
    2:大数据和人工智能没有必然联系,但是基于大数据的各类信息处理技术,为更好的人工智能的实现提供了极大的可能。
    数据越多,其塑造培养出的人工智能信息处理系统越聪明,这就是大数据之于人工智能的意义。
    大数据是人工智能的基石,如果说人工智能是机器之心,那么大数据就是血液
    2年前 0条评论
  • 柳忠岐的头像
    柳忠岐
    这个人很懒,什么都没有留下~
    评论
    人工智能,它的范围很广,广义上的人工智能泛指通过计算机(机器)实现人的头脑思维,使机器像人一样去决策。机器学习是实现人工智能的一种技术。机器学习是很多学科的知识融合,而数据分析是机器学习的基础。只有学会了数据分析处理数据的方法,你才能看懂机器学习方面的知识。
    总的来说:1人工智能是指使机器像人一样去决策。2机器学习是实现人工智能的一种技术。3机器学习分很多方法(算法),不同的方法解决不同的问题。深度学习是机器学习中的一个分支方法。4数据分析可以帮助你从零进入人工智能时代。如果你喜欢深入技术,学会了数据分析,你才能打好基础,去学习机器学习。如果你喜欢商业方面的内容,可以往人工智能业务方向发展。
    2年前 0条评论
  • 小乖爸爸的头像
    小乖爸爸
    这个人很懒,什么都没有留下~
    评论

    人工智能专业学的内容如下:

    1、人工智能学习内容

    学习内容包括数学基础、算法积累以及编程语言。数学要学好高数、线性代数、概率论、离散数学等等内容,算法积累需要学会人工神经网络、遗传算法等等,还需要学习一门编程语言,通过编程语言实现算法,还可以学习一下电算类的硬件基础内容。

    2、人工智能专业应用领域

    应用领域是很广泛的,主要有图像识别、博弈论、工智能导论、机器学习等,当然想要在这些领域有所发展,还需要学习一些信号处理、微积分、数据基础结构等等知识内容,保证使用过程中,有一定的理论来支撑。

    3、人工智能就业前景

    随着智能化的发展,人工智能技术会在互联网行业逐步应用和普及,把技术应用于物联网、大数据等行业,所以就业需求会不断扩大,我们也将会频繁与智能体互动和交流,这也是未来社会生产环境的发展趋势,需要我们去迎合时代发展的需要。

    随着人工智能的不断发展,对我们提出了新的要求,所以相关的人工智能基础内容,一定要学习起来,掌握人工智能技术将成为一个必然的趋势,学习人工智能专业的学生也会越来越多,相关技能的教育,也会迎来更多发展机会。

    2年前 0条评论
  • 宋媛丽的头像
    宋媛丽
    这个人很懒,什么都没有留下~
    评论
    大数据:(精准投放和强大的商业分析能力)
    在新媒体领域,使用人工智能和大数据技术,已经成为主流。新媒体对于传统媒体最大的颠覆就是:传统媒体比如电视、电影 更注重于内容的生产,而新媒体则是永远推送更个性化的内容给最感兴趣的人群,也就是让产生的内容和观看者更有效率地去匹配。而怎么做到更高效率去匹配,就是基于大数据的重复计算和优化的输出结果。

    内容越来越精准了,就是用户越来越容易很快地看到自己想看的内容,对于商业来说广告越来越精准,广告主能更快的精准性的展示给目标的用户。

    通过我们对“淘宝”“抖音”的使用就可以发现,人工智能技术在按照每个人的喜好,进行推荐。根据这个用户平时看视频的习惯,或者这个用户本身的特征来推荐。与此同时,这也是一个重要的方式来增强客户粘性,这就是为什么抖音会让人这么上瘾,大家一看就花很长时间 停不下来。

    大数据技术也有强大的商业价值。新媒体与商家之间的合作日益增多,例如抖音短视频中经常出现广告软文植入,相当于短视频带货,促使用户直接购买短视频中出现的商品。让销售也更有效率。

    不仅仅是前期广告的精准投放,大数据技术对于后期分析改善业务和决策方面也发挥了重要作用。比如大数据中的情感分析和文本分析,机器学习可以通过海量的文字信息 比如通过分析用户写的评论来识别文本的情感,从而知道用户喜欢或不喜欢什么,觉得产品是好是坏。这种情感分析,也被命名为意见挖掘,包括对消费者的态度、感受和对公司产品、品牌或服务的意见进行分类。

    人工智能:(在新媒体短视频中的应用)
    下面来说说人工智能的应用。人工智能和大数据紧密相连,人工智能之所以让电脑和机器像人脑一样有学习能力,像人类一样通过感官,眼睛耳朵手触来获得信息,是因为有大数据作为信息。人工智能基于大量的数据,让机器自主深度地去学习,越多的数据 机器学习得越多,机器就越聪明,就越接近于人类,然后人工智能方面的决策效果就越好。所以想做好的品牌 产品覆盖面要足够大。

    比如我们说百度也好,阿里也好,腾讯也好,只有这样的大企业才能做好的人工智能原因就在这。只有这样的大企业它才能形成大平台,才能拥有海量的用户,海量用户才能获得海量的大数据,有了海量的大数据之后,机器的学习效率和学习的迭代进程就会更快,它的大数据就更发达。

    2年前 0条评论
  • 吴桐的头像
    吴桐
    这个人很懒,什么都没有留下~
    评论
    学人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
    需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
    需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
    top域名认为人工智能门槛比较高,需要积累,如果你有这方面的天赋,可以去尝试。
    2年前 0条评论
  • 小花的头像
    小花
    这个人很懒,什么都没有留下~
    评论

    什么是大数据?大数据时代,数据不再仅仅指数字或数字构成的,数据的范畴要大的多。包括:互联网上的任何内容,比如文字、图片以及视频;书籍中的文字内容;医院里包括医学影像在内的所有医学档案资料;公司里的设计图纸、设计文档等;科学研究中的各种观测数据以及历史研究成果;甚至我们人类活动本身,也可被看成一种特殊的数据,比如我们在微信朋友圈等社交网络的行为,浏览网络的记录,我们每天的出行轨迹、活动范围等。从以上数据来源的纷繁复杂性,大数据的“大”的特征是不言而喻的,但大数据的特征不仅体量大,还具备多维度以及完备性的特点,才能刻画出比较完善的事物。

    什么是人工智能?学术界将人工智能分为传统人工智能方法和现代人工智能方法。那么传统人工智能方法是怎样的呢?其实简单地讲,传统人工智能的思路是,首先了解人类是如何产生智能的,然后让机器按照人的思路去做。

    简言之,人工智能,英文缩写为AI。是利用计算机科学技术研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能,英文缩写为AI。而大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

    两者的关系是大数据让人工智能变得更加智能,人工智能让大数据变得更有价值。

    2年前 0条评论
  • 大魏的头像
    大魏
    这个人很懒,什么都没有留下~
    评论

    人工智能专业主要需要学:《人工智能、社会与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》。

    《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》、《问题表达与求解》、《人工智能的现代方法II》、《机器学习、自然语言处理、计算机视觉等》。

    人工智能专业介绍

    人工智能(Artificial Intelligence)是中国普通高等学校本科专业。人工智能,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

    2年前 0条评论
  • 萱儿的头像
    萱儿
    这个人很懒,什么都没有留下~
    评论
    大数据和人工智能被数据科学家或其他大公司视为两个机械巨人。许多公司认为人工智能将给他们的公司数据带来革命。机器学习被认为是人工智能的高级版本,通过它,各种机器可以发送或接收数据,并通过分析数据学习新的概念。大数据帮助组织分析现有数据,并从中得出有意义的见解。

    大数据如何助力人工智能

    众所周知,人工智能将减少人类的整体干预和工作,所以人们认为人工智能具有所有的机器学习能力,并将创造机器人来接管人类的工作。人工智能的扩张会降低人的作用,大数据的介入是变革的关键。因为机器可以根据事实做出决定,但不能涉及情感互动,但是数据科学家可以基于大数据将情商囊括进来,让机器以正确的方式做出正确的决定。

    比如,对于任何一个医药公司的数据科学家来说,他不仅要分析客户的需求,还要遵守该地区特定市场的规章制度,调整药物成分为该市场提供最佳选择,机器学习不太可能完成这种任务。

    所以很明显,人工智能和大数据的融合不仅仅是人才和学习同时进行,还为任何一个新的品牌和公司带来很多新的概念和选择。人工智能和大数据的结合可以帮助公司以最好的方式了解客户的兴趣。通过机器学习,公司可以在最短的时间内识别客户的兴趣。

    2年前 0条评论
  • 果儿的头像
    果儿
    这个人很懒,什么都没有留下~
    评论

    要了解人工智能学什么内容,需要首先了解人工智能是什么:

    1、人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的 科技 产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

    2、人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

    那么,人工智能学什么内容呢?

    目前人工智能专业的学习内容主要包括: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。

    需要的基础课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)。

    从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

    想必大家也都知道,现在是一个逐渐智能化的 社会 ,随着 科技 的不断进步,越来越多的智能化产品开始进入到人们的生活中。而近些年,相信大家经常会听到人工智能四个字,人工智能这个行业比较吸引人,同时薪资待遇也较好。因此,很多的大学毕业生毕业之后都想要进入这个行业,但进入这个行业并不容易,如果是零基础的话更是需要学习很多东西才行。那么人工智能入门需要我们学习什么呢?

    需要我们了解的一点是人工智能是一个综合学科,其本身涉及很多方面,比如神经网络、机器识别、机器视觉、机器人等,因此,我们想要学好整个人工智能是很不容易的。

    首先我们需要一定的数学基础,如:高数、线性代数、概率论、统计学等等。很多人可能要问,我学习人工智能为什么要有数学基础呢?二者看似毫不相干,实则不然。线性代数能让我们了解如何将研究对象形象化,概率论能让我们懂得如何描述统计规律,此外还有许多其他数学科目,这些数学基础能让我们在学习人工智能的时候事半功倍。

    然后我们需要的就是对算法的累积,比如人工神经网络、遗传算法等。人工智能的本身还是通过算法对生活中的事物进行计算模拟,最后做出相应操作的一种智能化工具,算法在其中扮演的角色非常重要,可以说是不可或缺的一部分。

    最后需要掌握和学习的就是编程语言,毕竟算法的实现还是需要编程的,推荐学习的有Java以及Python。如果以后想往大数据方向发展,就学习Java,而Python可以说是学习人工智能所必须要掌握的一门编程语言。当然,只掌握一门编程语言是不够的,因为大多数机器人的仿真都是采用的混合编程模式,即采用多种编程软件及语言组合使用,在人工智能方面一般使用的较多的有汇编和C++,此外还有MATLAB、VC++等,总之一句话,编程是必不可少的一项技能,需要我们花费大量时间和精力去掌握。

    人工智能现在发展得越来越快速,这得益于计算机科学的飞速发展。可以预料到,在未来,我们的生活中将随处可见人工智能的产品,而这些产品能为我们的生活带来很大的便利,而人工智能行业的未来发展前景也是十分光明的。所以,选择人工智能行业不会错,但正如文章开头所说,想入行,需要我们下足功夫,全面掌握这个行业所需要的技能才行。

    1.数学基础:

    高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析,博弈论;

    2.算法积累:

    神经网络,支持向量机,贝叶斯,决策树,逻辑回归,线性模型,聚类算法,遗传算法,估计方法,特征工程等;

    3.编程语言:

    至少掌握一门编程语言,越精通越好,毕竟算法的实现还是要编程的;

    4.技术基础:

    计算机原理,操作系统,程序设计语言,分布式系统,算法基础;

    人工智能,即AI(ArtificialIntelligence),是一门包含计算机、控制论、信息论、神经生理学、心理学、语言学等综合学科。

    该概念第一次在达茅斯顿学术会议上提出:人工智能是从计算机应用系统角度出发,研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以及延生人类智能科学。

    核心课程

    ArtificialIntelligence人工智能

    MachineLearning机器学习

    AdvancedOperatingSystems高级操作系统

    AdvancedAlgorithmDesign高级算法设计

    ComputationalComplexity计算复杂性

    MathematicalAnalysis数学分析

    AdvancedComputerGraphics高级计算机图形

    AdvancedComputerNetworks高级计算机网络

    就业方向参考

    (1)搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、图片搜索、视频搜索等都是未来的方向)

    (2)医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。

    (3)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;

    (4)还有一些图像处理方面的人才需求的公司,如威盛、松下、索尼、三星等。

    另外,AI方向的人才都是高 科技 型的,在待遇方面自然相对比较丰厚,所以很这个方向很有发展前途。

    高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。

    需要算法的积累:

    人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

    需要掌握至少一门编程语言:

    比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

    学习人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。

    需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

    需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

    一、 Python基础

    二、 数学基础,其中包含微积分基础、线性代数以及概率统计

    三、 各种框架,如Tensorflow等

    四、 深度学习,其中包含机器学习基础、深度学习基础、卷积神经网络、循环神经网络、生成式对抗神经网络以及深度强化学习。

    五、 商业项目实战,如MTCNN+CENTER LOSS 人脸侦测和人脸识别、YOLO V2 多目标多种类侦测、GLGAN 图像缺失部分补齐以及语言唤醒等。

    熟练掌握C程序设计语言,以及C++、Java、Visual Basic中的一种程序设计语言

    从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

    感谢题主提出的问题,非常荣幸能够做出回答。

    1.人工智能是计算机科学的一个分支,它试图理解智能的本质,并产生一种新的智能机器,它能以类似人类智能的方式做出反应。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统。自人工智能诞生以来,其理论和技术日益成熟,应用领域不断扩大。可以想象,人工智能带来的 科技 产品将成为未来人类智能的“容器”。人工智能可以模拟人类意识和思维的信息过程。人工智能不是人类智能,但它可以像人类一样思考,并可能超越人类智能。

    2.人工智能是一门具有挑战性的科学,从事这项工作的人必须了解计算机知识、心理学和哲学。人工智能是一门非常广泛的科学,它由不同的领域组成,如机器学习、计算机视觉等。一般来说,人工智能研究的主要目标之一是使机器能够胜任一些通常需要人类智能的复杂任务。

    那么,人工智能学到了什么?

    目前,人工智能专业的学习内容主要包括:机器学习、人工智能导论(搜索方法等)。)、图像识别、生物进化理论、自然语言处理、语义网、博弈论等。

    所需的基础课程主要是信号处理、线性代数、微积分和编程(有数据结构基础)。

    从专业的角度来看,机器学习、图像识别和自然语言处理都是大方向,只要你精通其中的一个,你就已经非常强大了。所以不要看太多的内容,有些你只需要掌握,你需要选择一个方向来深入学习。事实上,严格来说,人工智能不难学,但不容易学。它需要一定的数学基础和一段时间的积累。

    2年前 0条评论
  • 海洋的头像
    海洋
    这个人很懒,什么都没有留下~
    评论

    人工智能专业学什么

    人工智能专业学什么,这一两年是人工智能专业开始朝专门化发展的前两年,这是一个属于人工智能的时代。世界许多国家都在加紧人工智能方面的研究,人工智能已经列入国家中长期发展规划。

    人工智能专业学什么1

    人工智能是一个包含很多学科的交叉学科,你需要了解计算机的知识、信息论、控制论、图论、心理学、生物学、热力学,要有一定的哲学基础,有科学方法论作保障。人工智能学习路线最新版本在此奉上:

    首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析;

    其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;

    当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;

    1、从基础学科来分析

    人工智能主要得学习数学,计算机,算法,心理学,统计学,概率学。当然这些主要是基础的。要想深造还得涉猎更多的垂直行业,比如社会学领域的人工智能就离不开社科,经济学领域的人工智能离不开财经等等。

    2、人工智能的`方向

    §机器学习

    §深度学习

    §模式识别

    §计算机视觉

    等等。不展开了,自己百度。

    3、人工智能前景广阔

    人工智能已经列入国家中长期发展规划。未来,不对,现在人工智能已经或正在渗入生产生活的方方面面。

    目前人工智能专业的学习内容有: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。

    需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)从上面的专业课程内容来看,需要掌握的人工智能相关的知识内容还是很多的。

    从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

    人工智能专业学什么2

    首先,从当前的技术发展趋势来看,人工智能专业的发展前景还是非常广阔的,当前不论是云计算、大数据技术,还是物联网相关技术,最终的发展诉求之一都是智能化,而智能化也是诸多技术体系实现价值增量的重要环节,所以人工智能当前也是科技研发的一个重点领域。

    虽然人工智能技术的发展对于整个科技领域都有非常重要的意义,而且人工智能技术的发展对于产业领域的创新也有非常多的影响,但是由于人工智能技术本身涉及到的内容非常多,而且难度也比较高,所以人工智能技术的发展必然会经历一个长期的过程。

    虽然人工智能技术的发展需要一个过程,但是当前随着各大科技公司纷纷开放自身的人工智能平台,当前人工智能的行业生态也有了一定的规模,相信在5G通信的推动下,未来人工智能领域也会迎来一个更好的发展环境。

    从人才需求趋势来看,由于人工智能领域依然处在发展的初期,所以当前人工智能领域的人才需求依然比较重视高端研发型人才,所以当前选择人工智能专业,最好考虑读一下研究生,这会明显提升自身的就业竞争力。

    从大的发展趋势来看,在人工智能技术逐渐开始落地应用之后,产业领域会释放出大量高端应用型人才的需求,所以如果没有读博的计划,当前可以重点考虑一下专硕,专硕的人才培养规模会逐渐扩大,所以选择专硕也会更容易考研成功。

    最后,对于本科生来说,在学习人工智能技术的过程中,一定要重视开发能力的提升,同时要选择一个自己的主攻领域,虽然当前计算机视觉和自然语言处理领域已经汇集了大量的学生,但是这两个领域往往也有更好的学习体验。

    2年前 0条评论
  • 瀚章的头像
    瀚章
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的

    大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯

    2年前 0条评论
  • 洋洋妈的头像
    洋洋妈
    这个人很懒,什么都没有留下~
    评论
    人工智能与大数据的联系一方面,人工智能需要数据来建立其智能,特别是机器学习。
    数字信息基础设施建设加速,数字经济获得更广阔空间,数据作为新型生产要素,对传统生产方式变革具有重大影响,是抓住新一轮产业革命机遇转型升级,提高经济效率、获得更广阔发展空间的重要抓手。数字基础设施和产业化数字技术,是数字化转型的基石,也能创造新的经济增长点。据天眼查数据显示,目前我国已有104.4万家数字经济相关企业。
    以5G为代表的数字信息综合基础设施,推动着经济社会数字化升级,关系着经济社会发展信息“大动脉”的打通。“十四五”期间以及更长时期,建设高速泛在、天地一体、云网融合、智能绿色、安全可控的综合性数字信息基础设施存在广阔空间。天眼查大数据显示,我国现有5G相关企业超13.5万家,2021年新增注册企业9.7万家,增速219.4%;广东、山东、江苏三地5G相关企业数量最多,分别有1.5万家,9100余家以及8400余家。
    3年前 0条评论
  • 大魏的头像
    大魏
    这个人很懒,什么都没有留下~
    评论

    很多人还搞不清大数据和人工智能的关系。

    这里引用马化腾在清华大学洞见论坛上说过话:

    未来所有企业形态都是在云端用人工智能处理大数据

    未来我们(腾讯)会继续大力投入的:

    第一是AI,第二是云计算,第三是大数据。过去把用电量作为衡量一个工业社会发展的指标。未来,用云量也会成为衡量数字经济发展的重要指标。大数据就更不用说了,一切有云,有AI的地方都必须涉及大数据,这毫无疑问是未来的方向。

    人工智能的基础是是算法、算力和海量数据,核心技术包括:

    计算机视觉(Computer Vision)、知识图谱(Knowledge Graph)、机器学习(Machine Learning)、自然语言处理(Natural Language Processing,NLP)、人机交互技术(Human-Computer Interaction Techniques)、语音识别(Automatic Speech Recognition)等等。

    大数据的核心很简单:只要你拥有足够多的数据,你就拥有了预见未来的能力。

    3年前 0条评论
  • 唐莹的头像
    唐莹
    这个人很懒,什么都没有留下~
    评论
    作为一名计算机专业的教育工作者,我来回答一下这个问题。
    从大的技术层面来看,人工智能的知识体系主要涉及到六个大的学习方向,包括自然语言处理、计算机视觉、机器学习(深度学习)、自动推理、知识表示和机器人学,这些方向各有体系且联系紧密。
    人工智能是典型的交叉学科,涉及到数学、哲学、控制学、计算机、经济学、神经学和语言学等学科,同时学习人工智能还需要具有一定的实验环境,对于数据、算力和算法都有一定的要求,所以当前人工智能领域的人才培养依然以研究生教育为主。
    对于初学者来说,如果想入门人工智能领域,可以从机器学习入手,一方面机器学习的知识体系相对比较容易理解,另一方面机器学习的应用场景也比较多,机器学习也是大数据分析的两种常见方式之一。
    机器学习的步骤涉及到数据收集、算法设计、算法实现、算法训练、算法验证和算法应用,这个过程需要学习编程语言、数据整理和算法设计这三大块内容。编程语言可以从Python语言开始学起,目前Python语言在机器学习领域的应用也比较普遍,有大量的案例可以参考。在学习的初期完全可以采用一些公开的数据集,这样也方便做结果对比,而算法可以从基础的常见算法入手,比如决策树、朴素贝叶斯、支持向量机等等。
    学习机器学习的过程还可以借助于当前的人工智能平台来完成,一部分大数据(云计算)平台也提供了大量机器学习方面的实践环境,基于这些平台来完成机器学习实验会更方便一些,而且也会积累一定的实践经验。
    3年前 0条评论
  • 然然的头像
    然然
    这个人很懒,什么都没有留下~
    评论

    人工智能是中国普通高等学校本科专业。人工智能,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科新兴学科、研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。


    发展背景

    AI,全称是Artificial Intelligence,即人工智能,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。

    以上内容参考 百度百科-人工智能

    3年前 0条评论
  • 赫赫的头像
    赫赫
    这个人很懒,什么都没有留下~
    评论

    人工智能专业学习课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程、人工智能平台与工具、人工智能核心等。

    1.认知与神经科学课程群

    具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程

    2.人工智能伦理课程群

    具体课程:《人工智能、社会与人文》、《人工智能哲学基础与伦理》

    3.科学和工程课程群

    新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、健康的发展道路上。

    4.先进机器人学课程群

    具体课程:《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》

    5.人工智能平台与工具课程群

    具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》

    6.人工智能核心课程群

    具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》

    4年前 0条评论
  • 王月的头像
    王月
    这个人很懒,什么都没有留下~
    评论
    人工智能是指计算机系统具备的能力,该能力可以履行原本只有依靠人类智慧才能完成的复杂任务。硬件体系能力的不足加上发展道路上曾经出现偏差,以及算法的缺陷,使得人工智能技术的发展在上世纪80—90年代曾经一度低迷。近年来,成本低廉的大规模并行计算、大数据、深度学习算法、人脑芯片4大催化剂的齐备,导致人工智能的发展出现了向上的拐点。

      人工智能和大数据的区别_大数据人工智能哪个好

      什么是大数据

      大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

      对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

      人工智能和大数据的区别_大数据人工智能哪个好

      人工智能和大数据的区别

      大数据相当于人的大脑从小学到大学记忆和存储的海量知识,这些知识只有通过消化,吸收、再造才能创造出更大的价值。

      人工智能打个比喻为一个人吸收了人类大量的知识,不断的深度学习、进化成为一方高人。人工智能离不开大数据,更是基于云计算平台完成深度学习进化。

      人工智能是基于大数据的支持和采集,运用于人工设定的特定性能和运算方式来实现的,大数据是不断采集、沉淀、分类等数据积累。

      与以前的众多数据分析技术相比,人工智能技术立足于神经网络,同时发展出多层神经网络,从而可以进行深度机器学习。与以外传统的算法相比,这一算法并无多余的假设前提(比如线性建模需要假设数据之间的线性关系),而是完全利用输入的数据自行模拟和构建相应的模型结构。这一算法特点决定了它是更为灵活的、且可以根据不同的训练数据而拥有自优化的能力。

      但这一显著的优点带来的便是显著增加的运算量。在计算机运算能力取得突破以前,这样的算法几乎没有实际应用的价值。大概十几年前,我们尝试用神经网络运算一组并不海量的数据,整整等待三天都不一定会有结果。但今天的情况却大大不同了。高速并行运算、海量数据、更优化的算法共同促成了人工智能发展的突破。这一突破,如果我们在三十年以后回头来看,将会是不弱于互联网对人类产生深远影响的另一项技术,它所释放的力量将再次彻底改变我们的生活。

    5年前 0条评论
  • 艾米的头像
    艾米
    这个人很懒,什么都没有留下~
    评论

    数据每天都在产生,各行各业都有,数据量也是相当之大,但如何整合数据,清洗数据,然后实现数据价值,这才是当今大数据行业的研究重点。

    人工智能就是大数据应用的体现。

    人工智能AI是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种复杂工作的理解是不同的。

    人工智能其实就是大数据、云计算的应用场景。

    人工智能和大数据的正确组合

    随着数据的生产和存储量呈指数级增长,人们将开始看到人工智能系统的适应和改进。

    虽然人工智能从业者可能对数据量有合理的处理,但大数据环境中的变化速度仍然是某些人工智能应用程序的重要问题。

    数据准确性是另一个越来越重要的问题,特别是对于分类方法和其他无监督的人工智能方法。数据是必须建立任何技术(尤其是人工智能)的基础。错误的数据基础(例如使用包含偏差或被错误操作的数据)通常会导致错误的技术方法产生错误的见解,而且可以通过压力以消极的方式得到强化。

    5年前 0条评论
点击加载更多
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部