人工智能专业是什么?人工智能电视怎么用?
-
人工智能专业学的内容如下:
1、人工智能学习内容
学习内容包括数学基础、算法积累以及编程语言。数学要学好高数、线性代数、概率论、离散数学等等内容,算法积累需要学会人工神经网络、遗传算法等等,还需要学习一门编程语言,通过编程语言实现算法,还可以学习一下电算类的硬件基础内容。
2、人工智能专业应用领域
应用领域是很广泛的,主要有图像识别、博弈论、工智能导论、机器学习等,当然想要在这些领域有所发展,还需要学习一些信号处理、微积分、数据基础结构等等知识内容,保证使用过程中,有一定的理论来支撑。
3、人工智能就业前景
随着智能化的发展,人工智能技术会在互联网行业逐步应用和普及,把技术应用于物联网、大数据等行业,所以就业需求会不断扩大,我们也将会频繁与智能体互动和交流,这也是未来社会生产环境的发展趋势,需要我们去迎合时代发展的需要。
随着人工智能的不断发展,对我们提出了新的要求,所以相关的人工智能基础内容,一定要学习起来,掌握人工智能技术将成为一个必然的趋势,学习人工智能专业的学生也会越来越多,相关技能的教育,也会迎来更多发展机会。
2年前 -
人工智能专业主要需要学:《人工智能、社会与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》。
《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》、《问题表达与求解》、《人工智能的现代方法II》、《机器学习、自然语言处理、计算机视觉等》。
人工智能专业介绍
人工智能(Artificial Intelligence)是中国普通高等学校本科专业。人工智能,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
2年前 -
随着社会不断发展,人工智能这类新兴专业也受到人们的普遍关注,那你知道人工智能属于什么专业吗?下面是我为大家收集的关于人工智能属于什么专业,希望可以帮助大家。
更多专业相关内容推荐↓↓↓
就业前景好的10大专业排名
2022工资高的专业推荐
高考专业怎么选择最好
选专业要不要服从调剂
人工智能属于什么专业
目前属于计算机专业,人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
什么是人工智能专业
人工智能,即AI(ArTIficial Intelligence),是一门包含计算机、控制论、信息论、神经生理学、心理学、语言学等综合学科。人工智能是从计算机应用系统角度出发,研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以及延生人类智能科学。
AI需要非常广泛的知识面和训练,学AI的学生要做好思想准备的是,你们不仅需要CS的雄厚的基础知识,还需要了解一些认知心理学、语言学、哲学和工程学的知识才能在未来的发展更顺利。除此之外,还需要掌握一些技能和工具,例如统计学、神经科学、控制、优化和运筹学。所以AI的申请者不是以单纯地成为IT人为目的的,而是要拥有丰富的知识量和技能的,未来多是冲着做researcher而去的。
人工智能专业要学些什么
1.学科基础课
程序设计基础、数据结构、人工智能导论、机器学习、计算机视觉、自然语言处理…..
2.专业基础课
自动规划、概率图模型、强化学习、神经网络、深度学习…
这样一门“引领未来”的学科,却面临着较大的人才缺口。据计算,我国当前人工智能领域还缺30万人才,这或许是高校争相开设该专业的原因之一。
人工智能专业 毕业 去向
就业方向非常广泛,未来几乎科研涉及各个领域,及所有行业,从科研机构、工程开发、机器人、计算机、电气自动化到工业、农业、交通、医疗、通讯等行业,可以说无所不及。
目前人工智能专业本专科都
人工智能专业就业方向有哪些
1、搜索方向,例如百度识图、作业帮搜题等。视频搜索也是搜索领域进一步研究的方向;
2、计算机视觉和模式识别方向,其应用领域包括智能办公、智能交通、智慧城市等等;
3、医学图像处理,医疗设备和医疗器械很多都会涉及到图像处理和成像技术。
4、无人驾驶领域,是人工智能重点应用领域之一;
5、智慧生活和智慧城市等,包括交通、商业、生活的诸多领域将会出现人工智能的影子。
人工智能专业掌握的知识能力
1.掌握数学、物理、计算机等方面的基本理论和基本知识;
2.掌握计算机科学与技术等方面的基本理论、基本知识和基本技能与 方法 ;
3.了解相近专业的一般原理和知识;
4.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;
5.具有一定的技术设计,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。
有学校设有相关专业招生,是个非常有前景的专业。
人工智能属于什么专业相关 文章 :
★ 人类对人工智能的看法有哪些
★ 人工智能专业论文
★ 教育部:人工智能正式进入本科专业
★ 人工智能结课论文
★ 人工智能专业未来的发展如何?35所高校首设人工智能本科专业
★ 2022会计专业生毕业论文范文
★ 为什么AI能成为“爆款”专业,人工智能专业发展前景真的好吗?
★ 人工智能操作系统论文
var _hmt = _hmt || []; (function() { var hm = document.createElement(“script”); hm.src = “https://hm.baidu.com/hm.js?6732713c8049618d4dd9c9b08bf57682”; var s = document.getElementsByTagName(“script”)[0]; s.parentNode.insertBefore(hm, s); })();
2年前 -
要了解人工智能学什么内容,需要首先了解人工智能是什么:
1、人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的 科技 产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
2、人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
那么,人工智能学什么内容呢?
目前人工智能专业的学习内容主要包括: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。
需要的基础课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)。
从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。
想必大家也都知道,现在是一个逐渐智能化的 社会 ,随着 科技 的不断进步,越来越多的智能化产品开始进入到人们的生活中。而近些年,相信大家经常会听到人工智能四个字,人工智能这个行业比较吸引人,同时薪资待遇也较好。因此,很多的大学毕业生毕业之后都想要进入这个行业,但进入这个行业并不容易,如果是零基础的话更是需要学习很多东西才行。那么人工智能入门需要我们学习什么呢?
需要我们了解的一点是人工智能是一个综合学科,其本身涉及很多方面,比如神经网络、机器识别、机器视觉、机器人等,因此,我们想要学好整个人工智能是很不容易的。
首先我们需要一定的数学基础,如:高数、线性代数、概率论、统计学等等。很多人可能要问,我学习人工智能为什么要有数学基础呢?二者看似毫不相干,实则不然。线性代数能让我们了解如何将研究对象形象化,概率论能让我们懂得如何描述统计规律,此外还有许多其他数学科目,这些数学基础能让我们在学习人工智能的时候事半功倍。
然后我们需要的就是对算法的累积,比如人工神经网络、遗传算法等。人工智能的本身还是通过算法对生活中的事物进行计算模拟,最后做出相应操作的一种智能化工具,算法在其中扮演的角色非常重要,可以说是不可或缺的一部分。
最后需要掌握和学习的就是编程语言,毕竟算法的实现还是需要编程的,推荐学习的有Java以及Python。如果以后想往大数据方向发展,就学习Java,而Python可以说是学习人工智能所必须要掌握的一门编程语言。当然,只掌握一门编程语言是不够的,因为大多数机器人的仿真都是采用的混合编程模式,即采用多种编程软件及语言组合使用,在人工智能方面一般使用的较多的有汇编和C++,此外还有MATLAB、VC++等,总之一句话,编程是必不可少的一项技能,需要我们花费大量时间和精力去掌握。
人工智能现在发展得越来越快速,这得益于计算机科学的飞速发展。可以预料到,在未来,我们的生活中将随处可见人工智能的产品,而这些产品能为我们的生活带来很大的便利,而人工智能行业的未来发展前景也是十分光明的。所以,选择人工智能行业不会错,但正如文章开头所说,想入行,需要我们下足功夫,全面掌握这个行业所需要的技能才行。
1.数学基础:
高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析,博弈论;
2.算法积累:
神经网络,支持向量机,贝叶斯,决策树,逻辑回归,线性模型,聚类算法,遗传算法,估计方法,特征工程等;
3.编程语言:
至少掌握一门编程语言,越精通越好,毕竟算法的实现还是要编程的;
4.技术基础:
计算机原理,操作系统,程序设计语言,分布式系统,算法基础;
人工智能,即AI(ArtificialIntelligence),是一门包含计算机、控制论、信息论、神经生理学、心理学、语言学等综合学科。
该概念第一次在达茅斯顿学术会议上提出:人工智能是从计算机应用系统角度出发,研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以及延生人类智能科学。
核心课程
ArtificialIntelligence人工智能
MachineLearning机器学习
AdvancedOperatingSystems高级操作系统
AdvancedAlgorithmDesign高级算法设计
ComputationalComplexity计算复杂性
MathematicalAnalysis数学分析
AdvancedComputerGraphics高级计算机图形
AdvancedComputerNetworks高级计算机网络
就业方向参考
(1)搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、图片搜索、视频搜索等都是未来的方向)
(2)医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。
(3)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;
(4)还有一些图像处理方面的人才需求的公司,如威盛、松下、索尼、三星等。
另外,AI方向的人才都是高 科技 型的,在待遇方面自然相对比较丰厚,所以很这个方向很有发展前途。
高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。
需要算法的积累:
人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:
比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
学习人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
一、 Python基础
二、 数学基础,其中包含微积分基础、线性代数以及概率统计
三、 各种框架,如Tensorflow等
四、 深度学习,其中包含机器学习基础、深度学习基础、卷积神经网络、循环神经网络、生成式对抗神经网络以及深度强化学习。
五、 商业项目实战,如MTCNN+CENTER LOSS 人脸侦测和人脸识别、YOLO V2 多目标多种类侦测、GLGAN 图像缺失部分补齐以及语言唤醒等。
熟练掌握C程序设计语言,以及C++、Java、Visual Basic中的一种程序设计语言
从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。
感谢题主提出的问题,非常荣幸能够做出回答。
1.人工智能是计算机科学的一个分支,它试图理解智能的本质,并产生一种新的智能机器,它能以类似人类智能的方式做出反应。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统。自人工智能诞生以来,其理论和技术日益成熟,应用领域不断扩大。可以想象,人工智能带来的 科技 产品将成为未来人类智能的“容器”。人工智能可以模拟人类意识和思维的信息过程。人工智能不是人类智能,但它可以像人类一样思考,并可能超越人类智能。
2.人工智能是一门具有挑战性的科学,从事这项工作的人必须了解计算机知识、心理学和哲学。人工智能是一门非常广泛的科学,它由不同的领域组成,如机器学习、计算机视觉等。一般来说,人工智能研究的主要目标之一是使机器能够胜任一些通常需要人类智能的复杂任务。
那么,人工智能学到了什么?
目前,人工智能专业的学习内容主要包括:机器学习、人工智能导论(搜索方法等)。)、图像识别、生物进化理论、自然语言处理、语义网、博弈论等。
所需的基础课程主要是信号处理、线性代数、微积分和编程(有数据结构基础)。
从专业的角度来看,机器学习、图像识别和自然语言处理都是大方向,只要你精通其中的一个,你就已经非常强大了。所以不要看太多的内容,有些你只需要掌握,你需要选择一个方向来深入学习。事实上,严格来说,人工智能不难学,但不容易学。它需要一定的数学基础和一段时间的积累。
2年前 -
人工智能专业学习课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程、人工智能平台与工具、人工智能核心等。
人工智能专业主要课程
1.认知与神经科学课程群
具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程
2.人工智能伦理课程群
具体课程:《人工智能、社会与人文》、《人工智能哲学基础与伦理》
3.科学和工程课程群
新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、健康的发展道路上。
4.先进机器人学课程群
具体课程:《先进机器人控制》、《认知机器人》、,《机器人规划与学习》、《仿生机器人》
5.人工智能平台与工具课程群
具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》
6.人工智能核心课程群
具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》
人工智能专业
人工智能专业是中国高校人计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。2018年4月,教育部在研究制定《高等学校引领人工智能创新行动计划》,并研究设立人工智能专业,进一步完善中国高校人工智能学科体系。2019年3月,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,根据通知,全国共有35所高校获首批「人工智能」新专业建设资格。
2年前 -
人工智能专业学什么
人工智能专业学什么,这一两年是人工智能专业开始朝专门化发展的前两年,这是一个属于人工智能的时代。世界许多国家都在加紧人工智能方面的研究,人工智能已经列入国家中长期发展规划。
人工智能专业学什么1
人工智能是一个包含很多学科的交叉学科,你需要了解计算机的知识、信息论、控制论、图论、心理学、生物学、热力学,要有一定的哲学基础,有科学方法论作保障。人工智能学习路线最新版本在此奉上:
首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析;
其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;
当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;
1、从基础学科来分析
人工智能主要得学习数学,计算机,算法,心理学,统计学,概率学。当然这些主要是基础的。要想深造还得涉猎更多的垂直行业,比如社会学领域的人工智能就离不开社科,经济学领域的人工智能离不开财经等等。
2、人工智能的`方向
§机器学习
§深度学习
§模式识别
§计算机视觉
等等。不展开了,自己百度。
3、人工智能前景广阔
人工智能已经列入国家中长期发展规划。未来,不对,现在人工智能已经或正在渗入生产生活的方方面面。
目前人工智能专业的学习内容有: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。
需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)从上面的专业课程内容来看,需要掌握的人工智能相关的知识内容还是很多的。
从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。
人工智能专业学什么2
首先,从当前的技术发展趋势来看,人工智能专业的发展前景还是非常广阔的,当前不论是云计算、大数据技术,还是物联网相关技术,最终的发展诉求之一都是智能化,而智能化也是诸多技术体系实现价值增量的重要环节,所以人工智能当前也是科技研发的一个重点领域。
虽然人工智能技术的发展对于整个科技领域都有非常重要的意义,而且人工智能技术的发展对于产业领域的创新也有非常多的影响,但是由于人工智能技术本身涉及到的内容非常多,而且难度也比较高,所以人工智能技术的发展必然会经历一个长期的过程。
虽然人工智能技术的发展需要一个过程,但是当前随着各大科技公司纷纷开放自身的人工智能平台,当前人工智能的行业生态也有了一定的规模,相信在5G通信的推动下,未来人工智能领域也会迎来一个更好的发展环境。
从人才需求趋势来看,由于人工智能领域依然处在发展的初期,所以当前人工智能领域的人才需求依然比较重视高端研发型人才,所以当前选择人工智能专业,最好考虑读一下研究生,这会明显提升自身的就业竞争力。
从大的发展趋势来看,在人工智能技术逐渐开始落地应用之后,产业领域会释放出大量高端应用型人才的需求,所以如果没有读博的计划,当前可以重点考虑一下专硕,专硕的人才培养规模会逐渐扩大,所以选择专硕也会更容易考研成功。
最后,对于本科生来说,在学习人工智能技术的过程中,一定要重视开发能力的提升,同时要选择一个自己的主攻领域,虽然当前计算机视觉和自然语言处理领域已经汇集了大量的学生,但是这两个领域往往也有更好的学习体验。
2年前 -
人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。
一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势2年前 - 人工智能是属于电子信息类的专业类别。电子信息类拥有电子科学与技术、应用电子技术教育、电信工程及管理、电磁场与无线技术、水声工程、广播电视工程、信息工程等专业,其主要特点是计算机技术与机械设备的结合,人工智能也是如此,所以人工智能属于电子信息类的专业类别。3年前
- 人工智能
就业方向:科学研究,工程开发。计算机方向。软件工程。应用数学。电气自动化。通信。机械制造
人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。应用领域包括机器翻译、语言和图像理解、自动程序设计、专家系统等。3年前 - 人工智能专业是中国普通高等学校本科专业。人工智能是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能专业以培养掌握人工智能理论与工程技术的专门人才为目标,学习机器学习的理论和方法、深度学习框架、工具与实践平台、自然语言处理技术、语音处理与识别技术、视觉智能处理技术、国际人工智能专业领域最前沿的理论方法,培养人工智能专业技能和素养,构建解决科研和实际工程问题的专业思维、专业方法和专业嗅觉。3年前 -
人工智能是中国普通高等学校本科专业。人工智能,是一个以计算机科学为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科、研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
发展背景
AI,全称是Artificial Intelligence,即人工智能,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
以上内容参考 百度百科-人工智能
3年前 -
目前人工智能并不是一级学科,人工智能领域的相关专业分散在自动化系、计算机系等院系中。大学本科阶段与人工智能相关的专业大致有三类(当然还有更加细分的专业):
1、智能科学与技术专业
旨在培养具备基于计算机技术、自动控制技术、智能系统方法、传感信息处理等科学与技术,进行信息获取、传输、处理、优化、控制、组织等并完成系统集成的,具有相应工程实施能力,可以在相应领域从事智能技术与工程的科研、开发、管理工作的、具有宽口径知识和较强适应能力及现代科学创新意识的高级技术人才。据悉,目前经教育部正式批准设立“智能科学与技术”本科专业的高校达50余个。
2、机器人工程专业
旨在培养掌握工业机器人技术工作必备知识、技术,有较强实践能力、创新精神,主要从事机器人工作站设计、装调与改造,机器人自动化生产线的设计、应用及运行管理等相关岗位工作,具有较强综合职业能力的高素质应用型专门人才。目前,全国开设机器人工程专业的高校已达60余所。
3、数据科学与大数据技术专业
旨在培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地培养学生掌握大数据应用中的各种典型问题的解决办法,提升学生解决实际问题的能力。目前全国已有百余所高校开设了这一专业。
4年前 -
人工智能专业是中国高校人计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。2018年4月,教育部在研究制定《高等学校引领人工智能创新行动计划》,并研究设立人工智能专业,进一步完善中国高校人工智能学科体系。2019年3月,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,根据通知,全国共有35所高校获首批「人工智能」新专业建设资格。[1][2]
2020年3月3日,教育部公布2019年度普通高等学校本科专业备案和审批结果,“人工智能”专业成为热门[3]。
中文名
人工智能
专业代码
080717T
专业层次
本科
学科门类
工学
专业类别
电子信息类4年前 - 是一个综合性专业,计算机专业,自动化专业,新材料专业,都有关联,人工智能是需要多学科的综合,可以看你的喜好选择。aqui te amo。4年前
- 现在有人工智能电视了??
个人认为,现在市面上最好的人工智能电视当属8K电视了!虽然我现在暂时还买不起~不过梦想还是要有的!话说8K电视的优点真的太多了,这里我主要讲两点吧。首先,它的分辨率达到了 7680*4320,是4K的四倍~画质极为清晰!也因为如此,中小尺寸就完全不具备展现效果,因此各品牌主要设计了65英寸以上的大屏幕彩电~光是想想用8K大电视看电影的感觉都颤栗啊哈哈哈哈。另外,8K电视的刷新率达到了120Hz,这就意味着咱们观看节目的时候就可以告别模糊的图像情况~特别是男士喜欢看的运动节目!保证不会遗漏精彩瞬间!我一点要攒钱买一台!5年前 -
人工智能专业主要学的是核心课程包括:数学、统计、计算机、自动化等,这些学科都属于人工智能专业的核心课程。
5年前 -
人工智能的研究主要有三方面:一是纯理论性的,以强人工智能或者神经网络为研究方向,这样的话,本科可以选择神经科学,也可以选修心理学、哲学、计算机科学二是从算法层面对人工智能的优化,这也是大多数人现在对人工智能的理解,本科自然要学计算机科学了,但博弈论之类重视逻辑的小类别学科也有选修或者自学的必要。第三种就是工业应用的方面。楼主的认识很对,这样主要应该学习自动化和机械控制。不知楼主在国内还是国外读大学。在国外,人工智能的理论研究还是很有价值的。国内嘛就别想了。在国内,计算机是现在很火的专业不必多说。选机械控制专业的话就业前景非常好。楼主你说喜欢硬件方面科技产品设计?若不是机械控制,人工智能目前还主要是研究算法层面的。电子工程这样的硬件专业目前对人工智能还没啥应用。当然楼主有志于在国内研究神经网络那是祖国的骄傲啊^ ^ 人工智能是一门很迷人的学科。希望楼主能找到适合自己的方向好好发展,带动我国的人工智能领域哦!6年前
-
人工智能在电视人机交互中的应用
无论是传统电视还是智能电视,要解决的问题都是一样的,即“如何让用户方便地获取内容”。这里有两个关键点:“方便”和“内容”。在方便性上,传统电视和互联网电视差不多,都是基于遥控器进行人机交互;“内容”是传统电视和互联网电视最大的不同点,这个无需赘述。而人工智能技术的长足发展,正在这两个关键点上都大大提升了用户使用体验。
关键词:人工智能 人机交互 深度学习
远场语音NLP自然语言处理ASR语音识别“人工智能(AI)”的概念1956年就已经出现了,但是受限于当时计算机的运算能力和算法理论,并没有应用于实际生活,了解的人自然不多。随着
GPU 能力和深度学习理论的发展,人工智能技术终于从实验室理论进入到产品化阶段,在各个领域开始突飞猛进。互联网电视就是其中之一。在讨论电视应用人工智能技术之前,需要厘清一些基本概念:所谓人工智能是指人造机器表现出来的智能。这种智能可能模拟人的思考,也可能完全异于人,目前阶段研究的核心主要还是“像人一样自我学习”。机器学习是人工智能的一个分支,深度学习又是机器学习的一个分支。完全异于人思考方式的研究,还是个天马行空的哲学问题。
无论是传统电视还是互联网电视,要解决的问题都是一样的,即“如何让用户方便地获取内容”。这里有两个关键点:“方便”和“内容”。在方便这点上,传统电视和互联网电视差不多,都是基于遥控器人机交互;“内容”是传统电视和互联网电视最大的不同点,这个无需赘述。而人工智能技术的长足发展,在这两个关键点上都大大提升了用户体验。
先说方便
由于人工智能技术在自然语言处理(NLP)领域已经能够达到90%
的意图识别率,所以直接使用自然语言控制电视获取内容成为可能。这里要强调的是“自然语言”,类似“给我来点跟《教父》一样水准的欧洲黑帮电影”这样的语言才是自然语言,而不是某些品牌厂商经常使用的“音量增加百分之二十”这样的“机器语言”。对自然语言的理解和反馈是衡量一台电视机人工智能水平的关键指标之一。
前几年用语音遥控的电视并不能叫做人工智能电视,最主要的原因就是只能识别固定的指令,而人工智能电视不仅能够理解自然语言,而且能够联机自我学习,举一反三理解更多用户的意图,越用越准确。
人类在对话过程中,会自动带着上下文。比如用户在第一次对话中问:“有什么好看的电影”,接下来他可能会问“不要好莱坞的”或者“只看今年的”,这种对话方式都是基于上下文的对话,我们叫做多轮对话。是否支持多轮对话也是衡量一台电视人工智能水平的关键指标。
除了语义理解,方便性还体现在远场收声能力。它可以让用户不再需要拿着遥控器“按住说话”,而是在客厅的任意位置呼唤电视和它对话。典型的场景是:“暴风大耳朵,最近有什么好看的片子推荐?”、“鱼香肉丝怎么做?”、“明早七点提醒我去机场”
图 1暴风 TV 中以语音唤起的服务远场收声是通过麦克风阵列实现的,麦克风阵列以前一直是实验室的研究对象,直到亚马逊推出
Echo 智能音箱,终于实现了规模产品化。麦克风阵列最少需要两颗麦克风,目前市面上有 4Mic、6Mic 甚至 8Mic 方案。阵列可以从背景噪音中感知用户说话的特殊波形,通过波束成形技术准确地向用户所在位置的方向定向收声,忽略其他方向的杂音。厂商会根据设备的特性选择不同的麦克风阵列,一般来说电视用的是线性麦克风,智能音箱采用的是环形麦克风
图 2 麦克风阵列的两种主要布局笔者一直关注亚马逊
Echo
的发展,在实际体验过程中发现,纯粹的语音交互目前还存在比较大的缺陷,反而是把远场语音应用于电视后体验会更好。举个例子,用户面对一个完全没有显示的智能音箱,基本上不知道该怎么说才能操作;而面对有大屏的电视,用户的紧张感会减轻很多,因为屏幕时时刻刻在提醒用户当前可以说什么样的话来操作电视。谷歌把这种交互方式叫做“视觉反馈”,并把这种反馈交互模式应用于今年十月份刚发布的最新的“Google
Assistant for
Android TV”系统,目前暴风 AI
电视的交互也是类似的模式。与此同时,亚马逊也意识到这个问题,并很快推出了带有屏幕的“EchoShow”作为补充。
图 3 暴风 AI 电视的视觉反馈提示目前最新的技术已经不仅能够识别人声,而且能够区分不同人的声纹,实现更加高级的操作,比如购物、支付和个性化推荐。国外的亚马逊和谷歌,国内的讯飞、若琪都拥有该项技术。自然语言理解能力和远场语音处理能力最终会让电视机用户摆脱遥控器,在人机交互上产生巨大的飞跃,这种飞跃不亚于当年苹果推出没有键盘只有触摸屏的
iPhone 手机。再说内容
除了自然语言理解,人工智能在个性化内容推荐上的应用其实更广泛。AI
可以从大量用户对话和用户行为中抽象整理出用户的“话外音”,了解用户的喜好习惯,然后根据这些特征主动推荐用户可能喜欢的内容给他。有时候,系统会推荐给某个用户从来没有接触过的内容类型,用户会惊呼“原来这个这么好看”,他可能自己都没有意识到这种内容会对自己的胃口。这种智能推荐已经在互联网产品中大量应用,典型的就是今日头条。传统的个性化内容推荐主要是基于标签体系。首先运营人员要对所有的内容“打标签”,比如“恐怖”、“热血”、“二次元”、“都市”等等,工作量极其巨大,而且准确与否完全依赖于运营人员的水平;然后系统再根据用户行为对用户进行画像,抽取标签进行匹配。这个过程中诞生了各种专业的推荐算法,技术人员随时调整各项参数优化算法,提高打开率。基于
AI 的个性化推荐系统和传统推荐系统有区别也有联系,区别最大的地方就是标签体系。AI
推荐系统里的“标签”实际上是系统自动从内容和行为日志等记录里自动提取的,不需要运营人员的参与。例如从电影的元数据(主演导演简介等)里分词提取属性标签,从用户的微博、豆瓣评论里分词提取用户的属性标签,然后依托GPU芯片进行大规模的矩阵运算,把高维度的向量数据逐步降维,最后简化到三维空间,根据三维空间里的聚集情况给出推荐。原理类似于传统推荐系统里的“协同过滤”。简单讲,就是假设一个人喜欢某个电影,那么他的好朋友也有可能喜欢那个电影。
“千人千面”的个性化推荐反过来又推进了电视界面的变化。
传统电视用“节目排播表”概念来编制频道,用户爱看不看错过了就等下次;互联网电视则完全基于点播模式,海量内容给你随便看自己找不到别怪我;基于
AI 的智能电视则是把传统的“人找内容”变成了“内容找人”,AI
把你可能喜欢的菜端到你面前,先尝后买。“尝”就是给用户预览完整影片中的精彩桥段,用短片引导用户看长片,降低了用户的选择难度节省了用户的时间。请注意,精彩桥段可不仅仅是电影的宣传 VCR,如何挑选桥段也是一门学问,可以另起一篇了。更大的可能性
人工智能在电视应用的场景不仅仅是人机交互和影视内容推荐,它可以用来做任何内容服务的推荐。前面讲到使用远场语音改变了电视的人机交互模式,所以电视界面不再受传统电视的树状菜单结构束缚,可以容纳更多的内容服务,并且用户可以直达服务。
具备人工智能特点的电视,典型的使用方法是这样的:
●“帮我找个八十年代的经典文艺片看看”;
●“随便放点周杰伦的歌”;
●“再买点上次买过的那种三元牛奶”,“对”,“再买两盒”;
●“去大鸭梨怎么走”,“对,就是最近的那家”;
●“半小时后提醒我关火”;
●“晚安(关闭家里的智能电器设备,并且让电视机休眠)”。
可以看到,应用人工智能技术的电视机已经大大超越了传统电视机的使用方法和使用范围。电视机可以帮用户挑选内容,挑选服务,帮用户控制智能家电,提醒用户备忘,甚至帮用户下单购买日常用品等等。上述这些不是设想的场景,而是已经成为现实的场景。
电视还是电视,但电视机已经早已不是电视机,它已成为家庭助手的一个大屏终端。而这个“家庭助手”的大脑,就是人工智能。
6年前
