怎么转行做人工智能?数据挖掘是人工智能吗?

安小丽 美股 50

回复

共5条回复 我来回复
  • 诗的头像
    这个人很懒,什么都没有留下~
    评论
    一、Python是解释语言,程序写起来非常方便
    写程序方便对做机器学习的人很重要。 因为经常需要对模型进行各种各样的修改,这在编译语言里很可能是牵一发而动全身的事情,Python里通常可以用很少的时间实现。举例来说,在C等编译语言里写一个矩阵乘法,需要自己分配操作数(矩阵)的内存、分配结果的内存、手动对BLAS接口调用gemm、最后如果没用smart pointer还得手动回收内存空间。Python几乎就是import numpy; numpy.dot两句话的事。
    当然现在很多面向C/C++库已经支持托管的内存管理了,这也让开发过程容易了很多,但解释语言仍然有天生的优势——不需要编译时间。这对机器学习这种需要大量prototyping和迭代的研究方向是非常有益工作效率的。
    二、Python的开发生态成熟,有很多有用的库可以用
    Python灵活的语法还使得包括文本操作、list/dict comprehension等非常实用的功能非常容易高效实现(编写和运行效率都高),配合lambda等使用更是方便。这也是Python良性生态背后的一大原因。相比而言,Lua虽然也是解释语言,甚至有LuaJIT这种神器加持,但其本身很难做到Python这样,一是因为有Python这个前辈占领着市场份额,另一个也因为它本身种种反常识的设计(比如全局变量)。不过借着Lua-Python bridge和Torch的东风,Lua似乎也在寄生兴起。
    三、Python效率超高
    解释语言的发展已经大大超过许多人的想象。很多比如list comprehension的语法糖都是贴近内核实现的。除了JIT之外,还有Cython可以大幅增加运行效率。最后,得益于Python对C的接口,很多像gnumpy, theano这样高效、Python接口友好的库可以加速程序的运行,在强大团队的支撑下,这些库的效率可能比一个不熟练的程序员用C写一个月调优的效率还要高。
    未来十年Python语言的发展前景形势一片大好,毫无疑问使用Python语言的企业将会越来越多,Python程序猿的人才缺口也将越来越大,认准时机,把握机遇,Python全栈开发工程师、Python开发工程师、自动化开发工程师、Linux运维工程师、Python爬虫开发工程师、前端开发工程师、大数据分析和数据挖掘等热门职位等你来选。
    一、Python是解释语言,程序写起来非常方便
    写程序方便对做机器学习的人很重要。 因为经常需要对模型进行各种各样的修改,这在编译语言里很可能是牵一发而动全身的事情,Python里通常可以用很少的时间实现。举例来说,在C等编译语言里写一个矩阵乘法,需要自己分配操作数(矩阵)的内存、分配结果的内存、手动对BLAS接口调用gemm、最后如果没用smart pointer还得手动回收内存空间。Python几乎就是import numpy; numpy.dot两句话的事。
    当然现在很多面向C/C++库已经支持托管的内存管理了,这也让开发过程容易了很多,但解释语言仍然有天生的优势——不需要编译时间。这对机器学习这种需要大量prototyping和迭代的研究方向是非常有益工作效率的。
    二、Python的开发生态成熟,有很多有用的库可以用
    Python灵活的语法还使得包括文本操作、list/dict comprehension等非常实用的功能非常容易高效实现(编写和运行效率都高),配合lambda等使用更是方便。这也是Python良性生态背后的一大原因。相比而言,Lua虽然也是解释语言,甚至有LuaJIT这种神器加持,但其本身很难做到Python这样,一是因为有Python这个前辈占领着市场份额,另一个也因为它本身种种反常识的设计(比如全局变量)。不过借着Lua-Python bridge和Torch的东风,Lua似乎也在寄生兴起。
    三、Python效率超高
    解释语言的发展已经大大超过许多人的想象。很多比如list comprehension的语法糖都是贴近内核实现的。除了JIT之外,还有Cython可以大幅增加运行效率。最后,得益于Python对C的接口,很多像gnumpy, theano这样高效、Python接口友好的库可以加速程序的运行,在强大团队的支撑下,这些库的效率可能比一个不熟练的程序员用C写一个月调优的效率还要高。
    未来十年Python语言的发展前景形势一片大好,毫无疑问使用Python语言的企业将会越来越多,Python程序猿的人才缺口也将越来越大,认准时机,把握机遇,Python全栈开发工程师、Python开发工程师、自动化开发工程师、Linux运维工程师、Python爬虫开发工程师、前端开发工程师、大数据分析和数据挖掘等热门职位等你来选。
    3年前 0条评论
  • 有有的头像
    有有
    这个人很懒,什么都没有留下~
    评论
    人人工智能是计算机科学研究领域的一个重要分支,又是众多学科的一个交叉学科,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等等,人工智能可以对人的意识、思维的信息过程的模拟。人工智能包括众多的分支领域,比如大家熟悉的机器学习、自然语言理解和模式识别等。

    机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。在我们当下的生活中,语音输入识别、手写输入识别等技术,识别率相比之前若干年的技术识别率提升非常巨大,达到了将近97%以上,大家可以在各自的手机上体验这些功能,这些技术来自于机器学习技术的应用。

    更多人工智能和机器学习在数据挖掘应用的分析,推荐咨询CDA数据分析师的课程。CDA课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。

    3年前 0条评论
  • 艾米的头像
    艾米
    这个人很懒,什么都没有留下~
    评论
    我个人觉得的话选择机构这种事情,还是需要自己去感觉的,而且现在一般的线上教育都会有公开课体验,你可以先去感觉一下。
    首先可以明确的是:承诺包教包会、x月速成的,都是不靠谱的;说是人工智能培训,但从头到尾一门课完事的,都是不专业的。此类培训班培训的都是伪人工智能,学员付出高额学费也只能学个普通编程。
    我个人推荐的话是湖南自兴人工智能,这样真正专业的人工智能培训机构的教学安排中,理论和实践课程同等重要。理论课程一般包含了数学和计算机基础、语言、机器学习、深度学习等等,实践课程为算法实操与项目练习。值得一提的是,目前国内只有自兴人工智能学院 具备向学员提供实训的条件。自兴 拥有全国首家省级人工智能专业性研究机构——自兴人工智能研究院 ,依托研究院,自兴人工智能学院 的学员有机会参与大型真实项目实训,将理论与实践结合,相当于在入职前就拥有了实战经验。有兴趣的话可以私信我,我给你发公开课链接,先去看一下教师实力或者上网查查资料也是可以的。
    6年前 0条评论
  • 赫赫的头像
    赫赫
    这个人很懒,什么都没有留下~
    评论
    数据挖掘(Data Mining)的定义是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。

    数据挖掘能做以下七种不同事情:

    · 分类 (Classification)

    · 估计(Estimation)

    · 预测(Prediction)

    · 相关性分组或关联规则(Affinity grouping or association rules)

    · 聚类(Clustering)

    · 描述和可视化(Description and Visualization)

    · 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

    6年前 0条评论
  • Kira的头像
    Kira
    这个人很懒,什么都没有留下~
    评论
    随着人工智能时代呼声渐起,Python凭借其入门简单、应用广泛的优势成为很多想要入行互联网行业的人们的首选编程语言。如果你想学一门语言,可以从语言的适用性、学习的难易程度、企业主的要求几个方面考虑。从这几个角度看,学习Python都没有什么可挑剔的。
    如果你想要专业的学习Python开发,更多需要的是付出时间和精力,一般在2w左右,时间在4-6个左右。可以根据自己的实际需求去实地看一下,先好好试听之后,再选择适合自己的。只要努力学到真东西,前途自然不会差。
    6年前 0条评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部