人工智能需要哪些技术?人工智能有哪些公司?

玖一 美股 60

回复

共39条回复 我来回复
  • Guo的头像
    Guo
    这个人很懒,什么都没有留下~
    评论

    1、苏州科达:苏州科达科技股份有限公司是领先的视讯与安防产品及解决方案提供商,致力于以视频会议、视频监控以及丰富的视频应用解决方案帮助各类政府及企业客户解决可视化沟通与管理难题。

    2012年,公司整体改制为股份有限公司;2016年12月1日,公司在上海证券交易所主板挂牌上市。

    2、佳都科技:佳都科技(PCI)创立于1986年,总部位于中国广州,在中国30多个区域设有分公司或办事处,员工超过2000人,拥有科学家研发团队,

    设立了佳都科技全球人工智能技术研究院和交通大脑研究院,建设或参与建设2个国家联合实验室、1个国家企业技术中心、4个省级工程技术中心。

    3、千方科技:北京北大千方科技有限公司是由北京大学作为法人股东之一,以留学归国科技人员、清华大学和北京大学的教授、博士、硕士为主要技术力量,与北京大学地学院全面合作组建的高新技术企业、软件企业。

    公司在交通领域的业务取得了快速的发展,在交通信息化建设的基础上,又拓展了交通信息服务和交通出行媒体运营等多方面的业务。

    4、卫宁健康:公司成立于1994年,是国内第一家专注于医疗健康信息化的上市公司,致力于提供医疗健康卫生信息化解决方案,不断提升人们的就医体验和健康水平。

    卫宁健康通过持续的技术创新,自主研发适应不同应用场景的产品与解决方案,业务覆盖智慧医院、区域卫生、基层卫生、公共卫生、医疗保险、健康服务等领域。

    5、神思电子

    神思电子是国内著名的身份识别解决方案提供商和服务商,也是公安部认证的居民身份证阅读机具定点生产企业。

    6、科大讯飞

    科大讯飞主要从事智能语音及语言技术研究、软件及芯片产品开发、语音信息服务及电子政务系统集成等等。

    7、中科曙光

    中科曙光是国内高性能计算领域的领军企业,也是亚洲第一大高性能计算机厂商。主要从事研究、开发、生产制造高性能计算机、通用服务器及存储产品,并围绕高端计算机提供软件开发、系统集成与技术服务等等。

    8、浪潮信息

    浪潮是中国最早的IT品牌之一,它是中国领先的云计算、大数据服务商。拥有云数据中心、云服务与大数据、智慧城市和智慧企业四大业务群组。浪潮服务器也位居中国市场第一、全球前三。

    2年前 0条评论
  • 陈婧的头像
    陈婧
    这个人很懒,什么都没有留下~
    评论

    行业主要相关上市公司:科大讯飞(002230)、百度(09888.HK)、腾讯(00700.HK)、搜狗(SOGO.NYSE)等。

    本文核心数据:全球智能语音市场规模、中国智能语音市场规模、中国智能家居市场规模、中国智能网联车渗透率

    智能语音进入加速应用阶段

    智能语音技术的关键部分主要包括语音识别、语音处理、语音合成等,随着相关技术的不断成熟,智能语音已经逐渐进入加速应用阶段,在车载语音、智慧教育、智能安防、智能家居、智慧医疗等领域都将出现智能语音技术的身影。

    全球智能语音市场高速发展

    从全球视角看,智能语音市场规模高速增长,2021年估算在264亿美元左右,较2020年203亿美元的市场规模增长30%。

    中国智能语音市场规模超过280亿元

    2017-2021年中国智能语音市场规模持续增长。根据德勤估算数据,2021年中国智能语音市场规模突破250亿元,达到285亿元,较2020年的217亿元增长31%。

    智能家居市场规模或将超过6500亿元,推动智能语音市场发展

    智能家居是智能语音应用的主要领域之一,随着物联网、人工智能等技术的快速发展,智能语音在家居领域的应用将进一步提速。2017-2021年中国智能家居市场规模不断增长,2021年预估突破5800亿元,2022年将超过6500亿元,将带动智能语音市场的持续提升。

    中国智能网联车通透率提升,车载智能语音系统应用深化

    2020年中国智能网联车市场渗透率已经达到49%,车载智能语音系统的应用也逐渐深化。根据IHS
    Markit的预测,2025年中国智能网联车渗透率将提升至75%,进一步推动智能语音在汽车领域的应用。

    综上所述,随着语音技术的发展,智能语音技术进入加速应用阶段,应用领域呈现多样化趋势。全球智能语音市场高速发展,中国智能语音市场也不甘落后,市场规模超过280亿元。智能网联车和智能家居市场的持续发展将进一步推动智能语音在这两个行业中的应用。

    以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。

    2年前 0条评论
  • 徐杰的头像
    徐杰
    这个人很懒,什么都没有留下~
    评论

    人工智能技术有:智能搜索引擎、自动驾驶(OSO系统)、人像识别、文字识别、图像识别、车牌识别、机器翻译和自然语言理解、专家系统、机器人学、自动程序设计、航天应用、机器学习、信息处理等。

    人工智能属于社会科学、技术科学、自然科学三向交叉学科,知识面涉及信息论、控制论、心理学、计算机科学等。

    对于人的思维模拟可以从两条道路进行,一是结构模拟,仿照人脑的结构机制,制造出“类人脑”的机器;二是功能模拟,暂时撇开人脑的内部结构,而从其功能过程进行模拟。现代电子计算机的产生便是对人脑思维功能的模拟,是对人脑思维的信息过程的模拟。

    人工智能技术的应用:

    人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

    其实际应用有机器视觉、指纹识别、人脸识别、视网膜识别、虹膜识别、掌纹识别、专家系统、智能搜索、定理证明、博弈、自动程序设计、还有航天应用等。

    其应用领域有语音识别领域,除了大家已较为熟悉的科大讯飞输入法,一家叫作云知声的人工智能公司,最近开发了智能医疗语音录入系统,采用了国内面向医疗领域的智能“语音识别”技术,能实时准确地将语音转换成文本。金融智能投资领域。所谓智能投资顾问,即利用计算机的算法优化理财资产配置。

    2年前 0条评论
  • 棉花糖的头像
    棉花糖
    这个人很懒,什么都没有留下~
    评论

    现在国内人工智能企业非常多,比较优秀的企业如下(排名不分先后)

    百度AI开放平台,提供全球领先的语音、图像、NLP等多项人工智能技术,开放对话式人工智能系统、智能驾驶系统两大行业生态,共享AI领域最新的应用场景和解决方案,帮您提升竞争力,开创未来。

    腾讯AI开发平台,依托腾讯AI Lab、腾讯云、优图实验室及合作伙伴强大的AI技术能力,提供领先的语音、图像、nlp等多项人工智能技术。

    科大讯飞,是亚太地区知名的智能语音和人工智能上市企业,以智能语音、自然语言理解、计算机视觉等核心技术,积极推动人工智能产品和行业应用落地,致力让机器“能听会说,能理解会思考”,用人工智能建设美好世界。

    商汤科技,是一家行业领先的人工智能软件公司,以原创技术体系为根基,SenseCore商汤AI大装置为核心基座,布局多领域、多方向前沿研究,快速打通AI在各个垂直场景中的应用,向行业赋能。

    云从科技,提供高效人机协同操作系统和行业解决方案的人工智能企业,以视觉+语音等多模态感知为基础,建立视觉认知,语言认知,环境认知等多模态认知融合,打造智能决策系统,实现人工智能技术闭环。

    智慧眼,是一家以计算机视觉、深度学习和大数据为核心的人工智能企业,以人工智能为核心驱动产业智能化发展,聚焦民生医疗健康、数字城市、智慧金融三大场景的应用落地,业务覆盖全国20多个省市自治区,涵盖人社、医保、民政、金融、公安和海关等行业,为超6亿用户提供智能化解决方案和服务。

    依图科技,是一家从事人工智能创新型研究的企业,致力于将先进的人工智能技术与行业应用相结合,建设更加安全、健康、便利的世界。具备国际视野的世界一流研发团队,致力于解决机器看、听、理解等根本问题,在计算机视觉、自然语言理解、知识推理、智能硬件、机器人等领域作出突破性贡献。

    2年前 0条评论
  • 萱萱的头像
    萱萱
    这个人很懒,什么都没有留下~
    评论
    人工智能需要多种基础知识,包括数学、统计学、计算机科学等。具体而言,学习人工智能需要掌握数学基础,特别是线性代数、微积分和概率论,这些都是人工智能领域的基础知识。此外,计算机编程能力也是必不可少的,因为人工智能的算法需要用计算机语言实现。
    2年前 0条评论
  • 唐莹的头像
    唐莹
    这个人很懒,什么都没有留下~
    评论

    人工智能的关键技术有以下:

    1、计算机视觉技术

    计算机视觉,简称CV(Computer Vision),是一门研究如何使计算机更好的“看”世界的科学。给计算机输入图片,图像等数据,通过各种深度学习等算法的计算,使得计算机可以进行识别、跟踪和测量等功能一般来说,CV技术主要有如下几个步骤:图像获取、预处理、特征提取、检测/分割和高级处理。

    2、自然语言处理技术

    自然语言处理(Natural Language Processing)技术是一门通过建立计算机模型、理解和处理自然语言的学科。是指用用计算机对自然语言的形、音、义等信息进行处理并识别的应用,大致包括机器翻译、自动提取文本摘要、文本分类、语音合成、情感分析等。

    3、跨媒体分析推理技术

    以前的媒体信息处理模型往往是针对单一的媒体数据进行处理分析,比如图像识别、语音识别,文本识别等等,但是现在越来越多的任务需要跨媒体类别分析,即需要综合处理文本、视频,语音等信息。

    4、智适应学习技术

    智适应学习技术(Intelligent Adaptive Learning),是教育领域最具突破性的技术。该技术模拟了老师对学生一对一的教学过程,赋予了学习系统个性化教学的能力。在2020年之后,智适应学习技术得到了快速发展,背后的推动里有强大的计算能力和海量的数据,更重要的还有贝叶斯网络算法的应用。

    5、群体智能技术

    群体智能(Collective Intelligence)也称集体智能,是一种共享的智能,是集结众人的意见进而转化为决策的一种过程,用来对单一个体做出随机性决策的风险。

    6、自主无人系统技术

    自主无人系统是能够通过先进的技术进行操作或管理,而不需要人工干预的系统,可以应用到无人驾驶、无人机、空间机器人,无人车间等领域。

    7、智能芯片技术

    一般来说,运用了人工智能技术的芯片就可以称为智能芯片,智能芯片可按技术架构、功能和应用场景等维度分成多种类别。

    8、脑机接口技术

    脑机接口(Brain-Computer Interface)是在人或动物脑与外部设备间建立的直接连接通道。通过单向脑机接口技术,计算机可以接受脑传来的命令,或者发送信号到脑,但不能同时发送和接收信号;而双向脑机接口允许脑和外部设备间的双向信息交换。

    9、知识图谱

    知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。

    10、人机交互

    人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。

    2年前 0条评论
  • 兔宝宝的头像
    兔宝宝
    这个人很懒,什么都没有留下~
    评论

    科大讯飞董事长刘庆峰在发表题为《因为看见,所以坚信》演讲时表示,未来机器人会像水、电一样走进每个家庭,人工智能赋能机器人要解决4大核心问题。

    一、是多模感知,不仅是语音感知,还要有视觉、有眼神、有面部表情、有肢体语言、有环境的综合感知,包括味觉触觉等

    二、是要有深度理解和学习能力,可充分理解我们所面对的物体、人物和环境等

    三、是可多维表达,不仅能用语音读出来,还要有虚拟形象、背景画面等;

    四、是运动智能,行动平稳,能够灵活避障,适应各种复杂地形。

    2年前 0条评论
  • 小乖爸爸的头像
    小乖爸爸
    这个人很懒,什么都没有留下~
    评论
    工智能计算机科支企图解智能实质并产种新能类智能相似式做反应智能机器该领域研究包括机器、语言识别、图像识别、自语言处理专家系统等。
    人工智能(Artificial_Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
    说起人工智能我们大家都很熟悉,各种人工智能概念,AI概念层不出穷,仔细想来无外乎智能音箱、智能打印机、智能售卖机等等诸如此类似乎没多少“智能”,和我们脑海中的“AI印象”,如:终结者、机器人、阿尔法狗、自动驾驶等技术大相径庭。
    目前,普遍认为人工智能的研究始于1956年达特茅斯会议,早期人工智能研究中,如何定义人工智能是个喋喋不休的问题,但基调始终是:像人一样决策、像人一样行动、理性的决策、理性的行动等研究方向。
    2年前 0条评论
  • 果果的头像
    果果
    这个人很懒,什么都没有留下~
    评论

    十大人工智能公司榜中榜,AlI人工智能企业十强

    1.Google谷歌

        创立于1998年美国,全球网络搜索引擎巨头,提供互联网搜索、云计算、广告技术等大量基于互联网的产品与服务,专注于整合全球信息的大型跨国科技企业。

    2.Microsoft微软

        微软由比尔·盖茨与保罗·艾伦创办于1975年,是全球知名的跨国科技公司,世界PC软件开发的先导,以研发、制造、授权和提供广泛的电脑软件服务业务为主。

    3.Facebook脸书

        由马克·扎克伯格创设于2004年美国,全球著名社交网络服务网站,深受欢迎的照片分享站点,全球颇具价值互联网科技公司。

    4.IBM

        创立于1911年美国,世界500强企业,计算机产业期的知名企业,世界较大的信息技术和业务解决方案公司,创立个人计算机(PC)标准。

    5.Amazon亚马逊

        亚马逊创立于1995年,全球知名电子商务公司平台,以销售图书起家,从2012年开始启动全球开店业务,旨在借助亚马逊全球资源,帮助中国卖家抓住跨境电商新机遇。

    6.NVIDIA英伟达

        始于1993年,1999年发明可编程GPU(图形处理器),专注于以设计智核芯片组为主,3D眼镜等为辅的科技企业,持有1,100多项美国专利。

    7.百度Al

        国内人工智能技术领先者,2013年成立全球首家深度学习研究院,代表项目百度大脑及人工智能助手度秘。国内首家专注于服务Al产业链的商业平台。

    8.华为HUAWEI

        华为创建于1987年,是全球前沿的ICT基础设施和智能终端提供商,拥有领先规模的基础通信设施,致力于构建万物互联的智能世界。

    9.阿里巴巴

        创立于1999年,2014年9月19日,阿里巴巴集团在纽约证券交易所正式挂牌上市,创造了史上最大IPO记录。业务包括核心商业、云计算、数字媒体及娱乐等。

    10.腾讯AI开放平台

        腾讯AI开放平台依托腾讯Al Lab、腾讯优图、WeChat Al等实验室,汇聚腾讯AI技术能力,开放100余项AI能力接口。

    2年前 0条评论
  • 安小丽的头像
    安小丽
    这个人很懒,什么都没有留下~
    评论
    人工智能专业学校排名:1、南京大学南京大学的人工智能专业在校友会2022年的排名中排在第一的位置,世界知名高水平、中国顶尖专业,专业档次为A++,虽然人工智能专业还为被评为国家级特色专业,但也是由于该专业开设时间较短的缘故。2、中国科学院大学中国科学院大学是以研究生教育为主、科教融合为特色的创新型高等学府,在科技相关专业的实力是比较强的,它的人工智能专业是世界高水平、中国顶尖专业,专业档次为A++,实力也是很不错的。3、天津大学天津大学是我国985、211院校,在化学、工程学等相关专业上表现突出,它的人工智能专业在近几年的发展也是比较不错的,是中国高水平专业,专业档次为A+,是校友会2022年排名中位列第三的院校。4、西安电子科技大学西安电子科技大学看名称就知道在科技相关专业上的实力,同时西安电子科技大学也是我国的211大学,它的人工智能专业在校友会2022年排名中位列第三,是中国高水平专业,专业档次为A+。5、浙江万里学院浙江万里学院位于浙江省宁波市,中国第一所国有改制高校,是一所由浙江省人民政府主管、浙江省万里教育集团举办,是“公办高校实行新的管理模式和运行机制”的新型高校,是硕士学位授予单位。
    2年前 0条评论
  • 张春梅的头像
    张春梅
    这个人很懒,什么都没有留下~
    评论
    人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
    需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
    需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
    top域名认为人工智能门槛比较高,需要积累,如果你有这方面的天赋,可以去尝试。
    2年前 0条评论
  • 李红的头像
    李红
    这个人很懒,什么都没有留下~
    评论
    1. 首先,你需要学一门适合人工智能的语言并学习其基础知识(如Python、R),推荐选择Python,下文我会说明Python怎么学习人工智能。

    2. 人工智能的本质是数学。如果你想真正透彻理解人工智能算法原理的话,你需要学习高等数学,具体内容如下图:

    3. 人工智能数学基础

      如果你选择了Python,还需要学习一下人工智能所需要的第三方库(Pandas、Numpy、openCV、Matplotlib等),Pandas、Numpy是数据处理的,openCV是图像处理的,Matplotlib是画图的。

    以上是人工智能的基础,下文将阐述人工智能学习路线:

    一.机器学习:

    1. 你需要学习一下机器学习的经典算法(如线性回归、逻辑回归、KNN、K-Means等)以及一些机器学习的第三方库,如scikit-learn.

    2. 练习。练习是巩固所学知识的一个重要方法。可以在Kaggle平台上参加一些新手比赛,如著名的泰坦尼克号乘客生存率预测。

    二.深度学习:

    1. 购买显卡。深度学习的学习对显卡的要求比较高,因此一张不错的显卡是十分必要的。而且注意要买英伟达的显卡,也就是N卡。因为一些深度学习的框架(特别是tensorflow)只能在英伟达的显卡上跑,目前推荐购买RTX2070,性价比较高。买别的也可以,但是显存最好大于等于6G。

    2. 在深度学习的学习中,你将接触一个新的概念——神经元网络。你需要学习一些神经网络的经典神经网络,如CNN、RNN。还有一些由它们衍生出来的神经网络结构,如YOLO。

    3. 其次,你需要学习至少一个深度学习库,如tensorflow(常用于工业开发)、pytorch(适合用于研究)。

    4. 练习。练习是巩固所学知识的一个重要方法。可以在Kaggle平台上参加一些正式比赛,也就是有奖金的比赛来提高自己的水平。

    2年前 0条评论
  • 然然的头像
    然然
    这个人很懒,什么都没有留下~
    评论
    人工智能包括五大核心技术:

    1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。

    2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。

    3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。

    4.机器人技术:近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。

    5.生物识别技术:生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等进行个人身份鉴定,最初运用于司法鉴定。

    2年前 0条评论
  • 卢京辉的头像
    卢京辉
    这个人很懒,什么都没有留下~
    评论
    人工智能是多学科,涵盖计算理论,数学基础,计算机编程,涵盖基因组或生物信息学,计算机非正式推理,模式识别,统计算法建模和解决。
    在统计,机械推理,认知科学,生物学,工程学等中找到协同作用,从中发展实际应用。

    第四次工业革命给人工智能带来了前所未有的机遇。已经熟悉的比如,机器人下棋,机器人可做一些工厂重复性作业。在人工智能基础知识中,可能会包括机器算法、计算理论,贝叶斯推理,贝叶斯网络,规划算法,机器函数语言,概率编程语言,计算机视觉,统计模式识别,信息理论,药物,视网膜眼科学,细胞蛋白质组学习。推理如计算建模,特别在数学方面,类计算,自动推理,图形推理,知识表示,定理证明,认知科学,机器学习,人际互动等方面。

    初学者:掌握一门编程语言,编程语言好似与机器人交流,编程语言能让机器人完成一系列具体的动作或实验。算法包括递归,概率,随机,堆排序,线性排序,很像是数据结构中的二叉树那样的算法内容等。具体好像是建立一个模型,编写一段程序,机器人完成一系列动作应用在生产生活各个领域。

    2年前 0条评论
  • 孙鹏的头像
    孙鹏
    这个人很懒,什么都没有留下~
    评论

    首先,人工智能是通过机器学习来实现的。非人工智能状态下,我们对计算机输入一组数据,它会根据固定的算法进行计算输出一个结果,而机器学习的算法则不同,它会输出给你一个算法模型,让计算机拥有了自动判断的能力,这就是人工智能。

    举个不太恰当的比喻,如果把普通计算看成是手工业,那么人工智能就是计算机界的自动化产业,而机器学习就是计算机界的工业革命。

    而“深度学习”就是机器学习的一个子集,是超越之前“神经网络研究”的一种机器学习方式,最大的特点是由机器自己来设计输入样本的特征,全过程完全自动化,而这种方式得益于海量数据的产生,来保证其自动设计的准确性。

    人工智能典型的技术应用:

    1、智能语音语义:包括语音识别,自然语言处理,语音合成,机器翻译等技术,涉及到的学科包括计算机,认知科学,语音学,信息论等。

    2、知识图谱:即描述各个事物之间的关系,通过大量的结构化和非结构化的数据,将各类事物和实体联系在一起。比如智能搜索,智能推荐,智能问答等方面的应用。

    3、计算机视觉:通过摄像头感知和理解影像,例如我们现在使用的人脸识别,图像识别,文字识别,还有体感运动,包括机器人和无人车的定位导航功能等。

    4、无人驾驶和机器人:让汽车或者机器人具备自动执行命令的功能,二者拥有同样的基本原理,感知-认知-决策-控制-执行。例如让汽车从A走到B,要先通过雷达或者传感器感知到自己的位置和周围环境,然后要认知到自身所处的情况和目标,根据这些信息决策出一条路线,控制自己的硬件进行导航,然后执行行驶任务。而这里的智能决策又涉及到博弈论和运筹学的知识。

    因此,广义上讲人工智能的基础,实际上覆盖了几乎所有的现代科学和技术,任何相关领域的学科和人才都可以从不同的角度切入行业,但是它的基础学科环境是“大数据”和“深度学习”。

    3年前 0条评论
  • 小野李猫的头像
    小野李猫
    这个人很懒,什么都没有留下~
    评论
    1.基础数学知识:线性代数、概率论、统计学、图论
    2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库
    3.编程语言基础:C/C++、Python、Java
    4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
    5.工具基础知识:opencv、matlab、caffe等
    3年前 0条评论
  • 诗的头像
    这个人很懒,什么都没有留下~
    评论
    人工智能需要基础内容包括认知与神经科学、人工智能伦理、先进机器人学、人工智能平台与工具等方面的课程。
    3年前 0条评论
  • 玖一的头像
    玖一
    这个人很懒,什么都没有留下~
    评论
    1.高等数学基础知识
    首先,你是零基础的话,就先将高等数学基础知识学透,从基础的数据分析、线性代数及矩阵等等入门,只有基础有了,才会层层积累,不能没有逻辑性的看一块学一块。
    2.有一定的英语水平
    试想,如果你连基础的英语单词都看不懂,还怎么写代码呢?毕竟代码都是由英文单词组成的。所以啊,把英文水平提升上来吧,这个非常非常重要的。
    3.Python
    Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。这也是人工智能必备知识。
    另外,还要提到的一点是:机器学习属于人工智能的一个分支,它是让机器能具备摆脱对人工指令的依赖,能按照一定的算法开展自主学习的能力,它的出现才真正让“人工智能”不枉智能二字。
    千锋的优势突出:
    1、是业内仅有的一家敢推出“两周免费试听,不满意不缴费”的政策,让学员更真实地了解学校、了解自己是否适合做开发;
    2、0学费入学,工作后分期还款,学员毕业能找到好工作;
    3、权威资深师资阵容,业内极具责任心、懂教学、拥有超强技术、有大型项目经验实战派讲师授课,由业内知名专家及企业技术骨干组成;
    4、自主研发QFTS教学系统,拥有自主知识产权的开发培训课程体系,讲练学相结合,课程内容紧贴当前前沿实用技术和企业实际需求;
    5、企业级项目实战训练,让学员参与真实的企业级项目研发,然后让学员毕业后就能独立设计开发自己的上线项目。
    3年前 0条评论
  • 宋媛丽的头像
    宋媛丽
    这个人很懒,什么都没有留下~
    评论
    1.
    高等数学基础知识 首先,你是零基础的话,就先将高等数学基础知识学透,从基础的数据分析、线性代数及矩阵等等入门,只有基础有了,才会层层积累,不能没有逻辑性的看一块学一块。
    2.
    有一定的英语水平 试想,如果你连基础的英语单词都看不懂,还怎么写代码呢?毕竟代码都是由英文单词组成的。所以啊,把英文水平提升上来吧,这个非常非常重要的。
    3. Python Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写
    3年前 0条评论
  • 孙鹏的头像
    孙鹏
    这个人很懒,什么都没有留下~
    评论
    数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识,具体来说包括:

    线性代数:如何将研究对象形式化?
    概率论:如何描述统计规律?
    数理统计:如何以小见大?
    最优化理论: 如何找到最优解?
    信息论:如何定量度量不确定性?
    形式逻辑:如何实现抽象推理?

    线性代数:如何将研究对象形式化?

    事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事万物都可以被抽象成某些特征的组合,并在由预置规则定义的框架之下以静态和动态的方式加以观察。

    着重于抽象概念的解释而非具体的数学公式来看,线性代数要点如下:线性代数的本质在于将具体事物抽象为数学对象,并描述其静态和动态的特性;向量的实质是 n 维线性空间中的静止点;线性变换描述了向量或者作为参考系的坐标系的变化,可以用矩阵表示;矩阵的特征值和特征向量描述了变化的速度与方向。

    总之,线性代数之于人工智能如同加法之于高等数学,是一个基础的工具集。

    概率论:如何描述统计规律?

    除了线性代数之外,概率论也是人工智能研究中必备的数学基础。随着连接主义学派的兴起,概率统计已经取代了数理逻辑,成为人工智能研究的主流工具。在数据爆炸式增长和计算力指数化增强的今天,概率论已经在机器学习中扮演了核心角色。

    同线性代数一样,概率论也代表了一种看待世界的方式,其关注的焦点是无处不在的可能性。频率学派认为先验分布是固定的,模型参数要靠最大似然估计计算;贝叶斯学派认为先验分布是随机的,模型参数要靠后验概率最大化计算;正态分布是最重要的一种随机变量的分布。

    数理统计:如何以小见大?

    在人工智能的研究中,数理统计同样不可或缺。基础的统计理论有助于对机器学习的算法和数据挖掘的结果做出解释,只有做出合理的解读,数据的价值才能够体现。数理统计根据观察或实验得到的数据来研究随机现象,并对研究对象的客观规律做出合理的估计和判断。

    虽然数理统计以概率论为理论基础,但两者之间存在方法上的本质区别。概率论作用的前提是随机变量的分布已知,根据已知的分布来分析随机变量

    3年前 0条评论
点击加载更多
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部