为什么出现人工智能?人工智能很难吗?

洋洋妈 美股 64

回复

共30条回复 我来回复
  • 刘罡的头像
    刘罡
    这个人很懒,什么都没有留下~
    评论
    不难的,人工智能其那就是很不错的,零基础就能进行学习的
    人工智能
    就业方向:科学研究,工程开发。计算机方向。软件工程。应用数学。电气自动化。通信。机械制造
    人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。应用领域包括机器翻译、语言和图像理解、自动程序设计、专家系统等。
    2年前 0条评论
  • A米的头像
    A米
    这个人很懒,什么都没有留下~
    评论
    51CTO数字化人才来回答这个问题:
      目前,人工智能专业的学习内容课程主要包括:机器学习、人工智能导论(搜索方法等),图像识别、生物进化理论、自然语言处理、语义网、博弈论等。
      所需的基础课程主要是信号处理、线性代数、微积分和编程(有数据结构基础)。
      从专业的角度来看,机器学习、图像识别和自然语言处理都是大方向,只要你精通其中的一个,你就已经非常强大了。所以不要看太多的内容,有些你只需要掌握,你需要选择一个方向来深入学习。事实上,严格来说,人工智能不难学,但不容易学。它需要一定的数学基础和一段时间的积累。
    2年前 0条评论
  • 请填写的头像
    请填写
    这个人很懒,什么都没有留下~
    评论
    人工智能之父 John McCarthy说:人工智能就是制造智能的机器,更特指制作人工智能的程序。人工智能模仿人类的思考方式让计算机能智能的思考问题,人工智能通过研究人类大脑的思考、学习和工作方式,然后将研究结果作为开发智能软件和系统的基础。

    人工智能的概念很宽,所以人工智能也分很多种,我们按照人工智能的实力将其分成三大类:
    1、弱人工智能
    弱人工智能Artificial Narrow Intelligence (ANI):弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。比如第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,Alpha Go其实也是一个弱人工智能。
    2、强人工智能
    强人工智能又称通用人工智能或完全人工智能, 指的是可以胜任人类所有工作的人工智能。一个可以称得上强人工智能的程序, 大概需要具备以下几方面的能力:存在不确定因素时进行推理,使用策略,解决问题,制定决策的能力;知识表示的能力,包括常识性知识的表示能力;规划能力;学习能力;使用自然语言进行交流沟通的能力;将上述能力整合起来实现既定目标的能力。
    3、超人工智能
    假设计算机程序通过不断发展,可以比世界上最聪明、最有天赋的人类还聪明,那么由此产生的人工智能系统就可以被称为超人工智能。超人工智能的定义最为模糊,因为没人知道, 超越人类最高水平的智慧到底会表现为何种能力。如果说对于强人工智能,我们还存在从技术角度进行探讨的可能性的话,那么,对于超人工智能,今天的人类大多就只能从哲学或科幻的角度加以解析了。

    2年前 0条评论
  • nanazhangdege的头像
    nanazhangdege
    这个人很懒,什么都没有留下~
    评论

    人工智能(Artificial Intelligence,AI)是指计算机像人一样拥有智能能力,是一个融合计算机科学、统计学、脑神经学和社会科学的前沿综合学科,可以代替人类实现识别、认知,分析和决策等多种功能。如当你说一句话时,机器能够识别成文字,并理解你话的意思,进行分析和对话等。

    人工智能的起源:人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。按照图灵的设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。而就在这一年,图灵还大胆预言了真正具备智能机器的可行性。

    1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看做是人工智能正式诞生的标志。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MIT AI LAB实验室。值得追的是,茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现。达特茅斯会议被广泛认为是人工智能诞生的标志,从此人工智能走上了快速发展的道路。

    人工智能的第一次高峰 在1956年的这次会议之后,人工智能迎来了属于它的第一段Happy Time。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”

    因此,人工智能项目停滞不前,但却让一些人有机可乘,1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。

    2年前 0条评论
  • yanlang的头像
    yanlang
    这个人很懒,什么都没有留下~
    评论

    一句话说:人工智能是机器模仿人类利用知识完成一定行为的过程

    人工智能可以分为弱智能和强智能,区分点是:是否能真正实现推理、思考、解决问题

    人工智能

    按程度可以分为人工智能、机器学习、深度学习。

    机器学习是利用已有数据,得出某种模型,利用模型预测结果

    深度学习是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据

    希望本回答可以帮助到你

    望采纳~

    2年前 0条评论
  • lovelysnowbird的头像
    lovelysnowbird
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种复杂工作的理解是不同的。

    人工智能不同于传统的机器人,传统机器人只是代替人类做一些已经输入好的指令工作,而人工智能则包含了机器学习,从被动到主动,从模式化实行指令,到自主判断根据情况实行不同的指令,这就是区别

    2年前 0条评论
  • 张晓娇的头像
    张晓娇
    这个人很懒,什么都没有留下~
    评论
    人工智能专业是一个比较好学的专业,课程难度不大,同时该专业还是一个很不错的专业,前景很好,中国正在产业升级,工业机器人和人工智能方面会是强烈的热点,以后很多东西都是人工智能了。我是桂林电子科技大学18级学生,我有一个认识的学弟就是人工智能专业的,我们学校是2020年才有人工智能这个专业的,下面我来具体介绍一下这个专业吧。01——个人感受我认为人工智能是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能这个专业前景非常广阔,所以说这个专业是很好的选择。还有,我觉得这个专业适合所有对人工智能有兴趣的同学去选择,该专业的课程难度不是很高,不过也不能随便摆烂,也得认真去学。
    说到学习这个专业的首选那肯定是清华大学,其次是北京大学、国防科技大学、浙江大学和哈尔滨工业大学等。如果你真的对人工智能有着浓厚的兴趣,那么选择这个专业不会有错的。
    02——专业介绍人工智能是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学,也是计算机科学的一个分支。它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。03——主修课程人工智能专业的核心课程有:专业导论、人工智能数学基础、线性代数 A、概率论与数理统计、程序设计与问题求解、电路与电子技术基础、面向对象编程、算法及数据结构、人工智能基础、数据科学导论、计算机组成原理、机器学习、信息论、机器人学概论、数字信号处理、模式识别、自然语言处理、现代控制理论等。我们在学习中需要注意的是:要认真学习智能的基础理论、基本方法和基本技能,掌握相关应用领域基础知识。还需要具有系统的计算思维和数据思维,具有创新创业意识和国际视野,具有良好的社会人文素养、职业道德和团队精神。04——就业前景人工智能专业就业方向主要包括科研机构(机器人研究所等)、软硬件开发人员、高校讲师等。在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点。人工智能目前是一个快速增长的领域,人才需求量大,相比于其他技术岗位,竞争度偏低,薪资相对较高,因此,趁着这个机遇,人工智能专业是一个很好的选择。05——小结人工智能这个专业不难学,但是大家也不能太随意,不然也会挂科的哟。并且人工智能专业相当的不错,未来必定是一个人工智能的世界,掌握了人工智能技术,就是一笔不可描述的财富。人工智能不仅能带动国家的发展,还能够方便世界上所有的人,所以,相信自己的感觉,对人工智能感兴趣的同学,来选择这个专业肯定没错的。
    2年前 0条评论
  • Guo的头像
    Guo
    这个人很懒,什么都没有留下~
    评论
    简而言之,人工智能就是用人造的方法模拟智能。

    这里包含两个关键概念,一个是“人造”,另一个就是“智能”。

    “人造”好理解,就是用人工的方法去模拟。但是“智能”是什么呢?

    在回答什么是“智能”前,让我们先看看以下哪个物品有智能:

    第一排很好判断,大家都认为它们是有智能的。

    那第二排的呢?

    1. 向日葵有智能吗?它可以跟随太阳移动。

    2. 搜索引擎有智能吗?它能把输入问题的答案列出来,比如:输入“著名的餐馆”,他可以给出著名餐馆的列表。

    3. 抽水马桶有智能吗?它在放水后能够知道何时停止放水,转而进行蓄水,当蓄满的时候又知道何时停止蓄水。

    第二排的物品(向日葵、搜索引擎、抽水马桶)和第一排的物品(现代人类、智人、猫)都有个共同之处,那就是: 它们能够根据外部环境的变化,从而自发的改变自己。

    比如:向日葵可以根据太阳的移动而移动自己的花盘;搜索引擎可以根据用户的不同输入展示不同的结果;抽水马桶可以根据水位来决定自己是放水还是蓄水,还是停止。

    进一步的一个问题是,同样都可以根据外部环境改变而自发的改变自己,那么这两排的物品有什么不同吗?

    这个区别还是很明显的,那就是: 在面对外部环境新的变化的时候,是否可以自主学习、理解环境,从而在新的外部环境下自发改变自己?

    第二排的物品都是为了某些特定情景提前设定好的,如果跳出这个特点情景,它们就不会有任何自发行为。

    比如:向日葵只是在发芽到花盘盛开前的这段时间是随着太阳移动的。搜索引擎也是通过事先计算好的关键字对应关系来呈现结果。最后的抽水马桶只是为了冲水这一件事情设计的。它们都不会对新的情景产生新的动作。

    “智能”通常具备以下两个特征:

    1. 根据外部环境的状态变化,而自发的决定自己的状态。

    2. 在面对新的外部环境的时候,可以自己学习、理解环境,从而在新的环境状态下自发决定自己的状态。

    根据这两个特征,第一排的物品是有智能的,而第二排的物品是没有智能的,只是有“功能”。

    人工智能就是用人造的方法模拟智能,模拟的智能能达到智能物品的两个特征即可。

    目前大家已知的智能物中,人类是被认为智能最强的。那么有没有什么方法来判断人造智能物是否达到了人类智能的级别?

    著名的现代计算机之父图灵曾经提出过一个思想实验,能通过这个实验的,就被认为拥有人类智能的级别。这个思想实验也被称为 “图灵测试” 。

    图灵测试是这样的,一个人和一个机器在隔开的情况下,通过一些装置(如键盘)向这个机器随意提问,进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这个机器就通过了测试,被认为拥有人类级别的智能。

    在图灵测试中,图灵并没有检验机器是否有合作、分工、演化、自由意志等因素,只是单纯的检测机器是否有足够的智能。但是这并没有妨碍哲学家讨论这些问题,哲学家认为,如果这些因素机器都能满足,那么这种智能叫强人工智能,如果不满足这些因素,而仅仅是通过了图灵测试,那么是一种弱人工智能。

    目前在人工智能领域还没有一种机器(或系统)能通过图灵测试。

    “智能”有一个特征就是在面对新的外部环境的时候,可以自己学习、理解环境,从而在新的环境状态下决定自己的状态。那么要如何才能学习呢?

    人类的学习方法是这样的:从一个问题的一些经验中进行归纳、演绎、联想,得出结论,进一步将结论用于解决这一类的问题上,在这个推广过程中不断利用上述步骤修正结论。人类的经验非常丰富,这些经验有的成为了全人类的一些共识,这使得人类的学习速度加快。

    那么如果是一个机器呢,我们该如何让一个机器学习?它能学习到什么程度?

    一个模拟人类学习的方法是: 给机器输入关于这个问题的数据,利用一些数学方法让机器根据这些数据做归纳、演绎,从而得出结论,再利用这个结论解决这一类的问题 。这个过程,称为机器学习。

    在机器学习中,得出的结论有个特定的名称,叫做“模型”;让机器根据数据做归纳、演绎的过程叫做“模型训练”;将模型用于解决这类问题的过程,叫做“泛化”。整个过程如下图所示:

    人们利用泛化结果的好坏来评价学习的模型的好坏。

    机器学习由于其方法的普适性和解决问题的泛化能力,被很多领域都广泛使用。目前,机器学习的成功已经广泛使用在很多方面。比如: 判断一封电子邮件是否是垃圾邮件,一些新闻资讯类App自动呈现用户感兴趣的内容,根据诊断结果判断一些病的患病几率,自动驾驶,和人类对弈围棋且战胜人类,图片中的一些元素的识别,语音翻译,虚拟个人助理等等。随着机器学习在这些应用领域的不断使用,机器也在不断优化自己的结果,从而不断提高机器学习的质量和效果。

    照这个趋势下去,机器会超越人类吗?

    机器学习和人类学习相比,机器学习还有以下几个硬伤:

    1. 缺少跳跃式的建模。

    目前机器学习的建模方法是逐步递进的,缺少了一些跳跃式的前进。人类经常有灵光一现等想象力飞跃的时刻,但是机器学习没有,它只有层层递进,逐步收敛,最终得到模型。

    2. 计算能力还不够强

    虽然比人脑单个神经元的计算速度快,但是人脑的并行计算能力远超现代计算机好几个量级。人脑可以同时有上亿个神经元被激活,参与计算。相比之下,机器的计算力有限,如果计算机目前的体系结构在未来保持不变,那机器在未来也没可能超越人类的计算能力。

    3. 知识储备不足

    人类的学习有个重要的来源就是人类共有的知识,这些知识给人类理解和学习问题提供基础,有时即便问题信息不足,人类依然可以利用这些知识来学习、梳理问题。而每个机器有自己学习到的模型,目前还不能将这些模型让其他机器共享。这也正是机器学习在很多领域很难达到人类水平的一个原因,比如:自然语言处理。

    4. 不能举一反三

    机器学习不能脱离要解决的实际问题,得出的模型也只是在这类实际问题中得到有限的泛化能力。这就限制了机器能像人类一样拥有举一反三的能力,只能一个个的学习。这就缺少了面对环境变化后的自主学习能力。

    综合来看,机器学习要想超越人类,需要解建模方法、决计算力、知识共享,举一反三这四个问题。目前还不能超越人类,只能在一些高度结构化而且频繁重复某些模式的领域才能适用。

    到此,我们宏观的了解了什么是人工智能,以及它的长处和短处,希望能对想要了解人工智能领域的人起到帮助。

    2年前 0条评论
  • nanazhangdege的头像
    nanazhangdege
    这个人很懒,什么都没有留下~
    评论
    工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。

    人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。

    自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。

    优点:

    1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。

    2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。

    3、人工智能可以提高人类认识世界、适应世界的能力。

    缺点:

    1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。

    2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。

    3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。

    2年前 0条评论
  • 张晓娇的头像
    张晓娇
    这个人很懒,什么都没有留下~
    评论

    人工智能学起来还是蛮有挑战的,不是那么容易!

    人工智能相关专业比计算机专业要更有发展前景,人工智能,是一个以计算机科学为基础,由计算机、数学、哲学等多学科交叉融合的交叉学科。

    近些年才刚刚在国内高校设立人工智能学院,开设的人工智能相关专业比如:智能科学与技术、数据科学与大数据专业。具体学习的课程各个学校会有不同,大概包括这些课程3个方向:

    • Ø 计算机相关:Linux操作系统、Java语言编程、数据库原理与应用、数据结构、数据挖掘与数据分析

    • Ø 数学及统计类课程:高等数学、线性代数、概率论、数理统计

    • Ø AI相关:机器人、语言识别、图像识别、自然语言处理、人脸识别,语音识别,智能算法推荐、深度学习、知识图谱、计算机视觉

    就业前景如何呢?

    数据科学与大数据技术与人工智能专业不仅有着明朗的就业前景,在就业岗位的薪资待遇上有着无法比拟的就业优势。基本薪酬,薪资水平、就业满意度都优于全国平均水平的专业。

    2年前 0条评论
  • 彤彤的头像
    彤彤
    这个人很懒,什么都没有留下~
    评论

    人工智能当然不好学,因为非常高科技,但是如果学出来以后不但好就业而且还会有非常好的发展前景。
    人工智能专业好学吗
    人工智能专业对于数学基础不好的人可能会比较难学的。因为需要学编程,而且学的东西比较繁杂,从认知与神经科学、人工智能伦理到人工智能平台与工具都要学。但学得好,就业前景也不错。
    虽然一些中国高校开设了相关课程,但总体上缺乏人工智能的基础教学能力,高校在独自培养具有动手能力的应用型人才上有所欠缺。
    人工智能极富挑战性
    从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
    人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

    2年前 0条评论
  • 萱儿的头像
    萱儿
    这个人很懒,什么都没有留下~
    评论

    有一定难度,但人工智能方向是当下热门。假如自己现在没有人工智能方向的基础,可以了解人工智能行业当中比较热门的课程具体内容,了解清楚以后感兴趣就可以深入学习。因为每个人对知识的看法程度是不一样的,相比于想,付出行动才能知道适合自己的学习方式和感兴趣的方法。

    但假如是工作转行,可以充分利用自己的工作经历和能力,让它成为加分项,以此为突破转向人工智能,也是一种不错的方式。

    若帮助到您,求采纳~

    2年前 0条评论
  • 天街刘旭的头像
    天街刘旭
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

      “人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

      关于什么是“智能”就有很多问题。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维)等等问题。

      人唯一了解的智能是人本身的智能,这是普遍认同的观点。

      但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。

      因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。

      人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。

      人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。

      人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

      1)知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。

      2)常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。

      3)问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。

      4)搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。

      5)机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。

      6)知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。

      推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。

      人工智能的研究可以分为几个技术问题,其分支领域主要集中在解决具体问题,其中之一是如何使用各种不同的工具完成特定的应用程序。

      AI的核心问题包括推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。强人工智能目前仍然是该领域的长远目标。目前比较流行的方法包括统计方法,计算智能和传统意义的AI。

      目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。

    2年前 0条评论
  • 辛巴的头像
    辛巴
    这个人很懒,什么都没有留下~
    评论
    人工智能难字!
    目前人工智能专业的学习内容有: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。 需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(最好有数据结构基础)

    从上面的专业课程内容来看,需要掌握的人工智能相关的知识内容还是很多的,不过前置的课程在大学本科期间都有学习过,如信号处理,线性代数,微积分这些,如果你在学校期间,这部分的内容学习的不错,那么恭喜你了,你的基础不错。可以专心学习后面机器学习、深度学习相关的内容了。

    从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,最终你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

    3年前 0条评论
  • 王月的头像
    王月
    这个人很懒,什么都没有留下~
    评论
    人工智能是比较好学的,因为这个专业是比较实心,比较时髦的,以后就业前景是非常好的,可以增加自己的实力
    3年前 0条评论
  • 壮壮的头像
    壮壮
    这个人很懒,什么都没有留下~
    评论
    不太好学,门槛比较高,人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。

    需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

    需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

    3年前 0条评论
  • 天街刘旭的头像
    天街刘旭
    这个人很懒,什么都没有留下~
    评论
    大家在学习一门新技术的时候,学习方式很重要,如果能够选择一个适合自己的方式去学习,那么学习效果也能事半功倍,再辅助以足够的练习,那么从这种层面来说学人工智能不难。
    3年前 0条评论
  • 张晓娇的头像
    张晓娇
    这个人很懒,什么都没有留下~
    评论
    工智能不难学,目前的人工智能还不能称的上真正意义的上的智能,因为目前都还是基于大数据驱动的机器学习,其实就是让计算机记住了大量的数据,还不具备最简单的推理、联想等能力。
    所以学习人工智能的的突破点就比较明确了,就是学好机器学习就行了。
    机器学习主要包括,神经网络计算、支持向量机、决策树、深度卷积神经网络、等。
    学习这些可以看周志华的西瓜书入门,在此之前、你需要现有一定的高等数学和矩阵分析的数学基础,因为神经网络的训练过程就是梯度下降法,需要用到高等数学里的链式求导法则,还有一些矩阵运算的推导需要你有一些线性代数和矩阵分析的基础,比如机器学习里经常听到的hessian矩阵,就需要有矩阵求导的知识! 此外你还需要有一定的概率论、随机过程基础,比如 HMM隐马尔可夫算法就需要随机过程理论。
    3年前 0条评论
  • 玖一的头像
    玖一
    这个人很懒,什么都没有留下~
    评论
    首先,你的基础怎么样。很多时候,事实证明,有人天生就是学理科的料,他们的数学计算能力很强,逻辑思维很严谨,别人抓破脑袋也想不明白的高数、线性积分,在他们眼里就是小菜一碟。如果你在数学、逻辑等方面的基础很好,那就说明你天生就是干这行的人,叫老天爷赏饭吃,入门真的很快,随便碾压别人。

    其次,你对人工智能是否真的感兴趣。兴趣是最好的老师,人工智能是比较深奥的领域,是一门极具挑战性的科学,要沉得下心来钻研,这时候能不能撑得下去,那就看你的兴趣和意志了。为什么兴趣这么重要?我给你说一个例子吧,大学的时候,我一个哥们,突然对滑冰感兴趣,可能是在某个时间在溜冰场遇到了喜欢的人吧。那一整个学期,他不仅自己拼命苦练,还看了各种教学视频,买了各种专业的设备,从一个菜鸡变成业余,再变成能花样滑冰。别人都在宿舍玩游戏的时候,他在滑冰;别人在睡觉的时候,他还在练。等我们在溜冰场看到他的时候,都震惊了,竟然能这么熟练,我们站都没站稳,还在反复摔到烂屁股,他已经在跟别人玩花样了。老实说,如果不是兴趣,我想不出有什么理由让他坚持了下来。

    如果你在以上两个方面都很好,那人工智能肯定是手到擒来。三天打鱼两天晒网的人,真的就比不上会学习、懂学习、能沉下心的人。

    4年前 0条评论
  • 柳忠岐的头像
    柳忠岐
    这个人很懒,什么都没有留下~
    评论
    人工智能(计算机科学的一个分支)

    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,但没有一个统一的定义。
    人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。但是这种会自我思考的高级人工智能还需要科学理论和工程上的突破。
    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。
    工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
    关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
    人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。

    4年前 0条评论
点击加载更多
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部