人工智能用什么编程?人工智能研究的领域有哪些?

小野李猫 美股 63

回复

共20条回复 我来回复
  • 陈婧的头像
    陈婧
    这个人很懒,什么都没有留下~
    评论
    机器学习,计算机视觉等等。
    人工智能研究的领域极为广泛,几乎涉及到人类创造所需要的诸如数学、物理、信息科学、心理学、生理学、医学、语言学、逻辑学以及经济、法律、哲学等重要学科。应用领域也分布的广,人工智能主要分为自然语言处理、计算机视觉、语音识别、专家系统以及交叉领域等五个领域。
    2年前 0条评论
  • 徐杰的头像
    徐杰
    这个人很懒,什么都没有留下~
    评论
    人工智能的研究方向可以划分为三层,分别是基础层、技术层和应用层,常见的机器学习、自然语言处理、语音识别等都属于技术层。

    基础层是推动人工智能发展的基石,主要包括数据、芯片和算法三个方面,技术层主要是应用技术提供方,应用层大多是技术使用者,这三者形成一个完整的产业链,并相互促进。不过,很多企业(特别是大型科技公司)业务线较长,很多时候既是技术提供方,也是技术的使用者,因而很难有清晰的界定。技术层主要分为三个领域:机器学习、语音识别和自然语言处理、以及计算机视觉。在【AI应用】领域,中国呈现出爆发的趋势,目前主要集中在安防、金融、医疗、教育、零售、机器人以及智能驾驶等领域。

    更多关于人工智能的相关内容,建议搜索达内教育了解一下。达内教育对标企业人才标准,制定专业学习计划,囊括主流热点技术,课程穿插大厂真实项目讲解,理论知识+学习思维+实战操作,打造完整学习闭环。实战讲师经验丰富,多种班型任你选择。

    2年前 0条评论
  • 许健的头像
    许健
    这个人很懒,什么都没有留下~
    评论
    人工智能在交通出行领域、家庭家居领域、公共安全领域、手机及互联网 娱乐 领域以及医疗 健康 领域都为人们带来了便利。1、交通出行领域:共享单车、共享电车、共享 汽车 方便了出行,让出行成本降低。智能辅助驾驶系统帮助人们安全驾驶,安全出行。2、家庭家居领域:智能互联家居在现在生活中应用广泛,它能够帮助人们对生活环境进行智能调控,对房屋进行安全监测、危险预警等,减少了煤气泄露、房屋被盗的风险。一句话打开音乐,一句话打开空调,一句话让生活变得很简单。3、公共安全领域:人脸、指纹、虹膜等生物特征的识别和大数据的结合,再进行实时监测,人工智能的应用能够加强公安系统的管理和安全预测。由大数据和人工智能构建起来的智慧城市工程,对城市公共安全领域。4、手机及互联网 娱乐 领域:人们接触最多的人工智能领域的应用来自于手机及互联网。手机的语音助手、实时翻译功能、图片文字智能识别提取、听歌识曲、刷脸解锁、拍照优化、相册分类、影像处理、AR特效、VR 游戏 等等,都不同程度的应用到了人工智能技术。想了解更多有关人工智能的详情,推荐咨询达内教育。达内教育独创TTS8.0教学系统,达内OMO教学模式,全新升级,线上线下交互学习,满足学生多样化学习需求;同时,拥有经验丰富的讲师进行课程的讲授,对标企业人才标准,制定专业学习计划,囊括主流热点技术,运用理论知识+学习思维+实战操作,打造完整学习闭环;更有企业双选会,让学生就业更顺利。
    2年前 0条评论
  • 萱儿的头像
    萱儿
    这个人很懒,什么都没有留下~
    评论

    典型的人工智能语言主要有LISP、Prolog、Smalltalk、C++等。

    在人工智能手册中介绍了七种人工智能语言:

    LISP,PLANNER,CINNIVER,QLISP,POP-2,SAIL,FUZZY。近百种人工智能语言中,只有LISP和后起之秀Prolog是人工智能研究和应用中占重要地位的两种人工智能程序设计语言。

    一般来说,人工智能语言应具备如下特点:

    ·具有符号处理能力(即非数值处理能力);

    ·适合于结构化程序设计,编程容易;

    ·具有递归功能和回溯功能;

    ·具有人机交互能力;

    ·适合于推理;

    ·既有把过程与说明式数据结构混合起来的能力,又有辨别数据、确定控制的模式匹配机制。

    可否认的。

    谈到LISP和PROLOG两种AI语言的重要性,我们可以从美国AI界的权威学者、麻省理工学院教授P.H.Winston(温斯顿)所说的三段话来体会:

    (1)温斯顿认为,LISP 语言是AI的数学,不仅对AI的机器实现有重要意义,而且是AI理论研究的重要工具。

    (2)“在中世纪,拉丁文和希腊文的知识对所有学者来说,都是必不可少的。只懂一种语言的学者必然是一个残缺不全的学者,他缺乏从两个方面来观察世界所获得的那种理解力。同样地,现代的AI专业人员如果不能同时大致通晓LISP和Prolog,也犹如一个残疾人,因为就广义来说,这两种人工智能的主要语言的知识都是必不可少的。”

    “我一直热衷于Lisp,Lisp是在MIT被制造并且在那儿成长起来的。”

    (3)概括地说,计算机语言的发展正是一个从HOW型低级语言向WHAT型高级语言进化的过程.在HOW型语言中,程序编制者必须详细说明运算是怎样(HOW)一步一步进行的;而在WHAT型语言中,程序编制者只需简单说明要做的事情是什么(WHAT) 。 ?现代的LISP语言是这些语言的佼佼者,因为采用Common Lisp格式的Lisp具有非凡的表现力,但是如何做某件事情仍然是有待于Lisp程序编制者来表达的东西.相反,Prolog是一种明显地冲破了HOW型语言陈规的语言, 它鼓励程序编制者去描述情况和问题,而不是那些用来解决问题的详细步骤。”

    由以上论述可以看出LISP语言和Prolog语言对人工智能学科和人工智能学者的重要性。

    一般来说,LISP可以称为人工智能的汇编语言, Prolog是人工智能更高级的语言。

    2年前 0条评论
  • 壮壮的头像
    壮壮
    这个人很懒,什么都没有留下~
    评论
    人工智能的研究领域主要有:模式识别、知识工程、机器人学。

    具体分析如下:
    1、模式识别:又称图形识别,是通过计算机用数学技术方法来研究模式的自动处理和判读。
    2、知识工程:是费根鲍姆教授在第五届国际人工智能会议上提出的一种概念,恰当运用专家知识的获取、表达和推理过程的构成与解释,是设计基于知识的系统的重要技术问题。
    3、机器人学:又称为机器人技术或机器人工程学,是与机器人设计、制造和应用相关的科学,主要研究机器人的控制与被处理物体之间的相互关系。
    自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。

    想了解更多有关人工智能方面的详情,推荐咨询达内教育。达内教育拥有1v1督学跟踪式学习有疑问随时沟通,企业级项目,课程穿插大厂真实项目讲解,对标企业人才标准制定专业学习计划,囊括主流热点技术,理论知识+学习思维+实战操作,打造完整学习闭环。达内教育实战讲师、经验丰富、多种班型供学员选择、独创TTS8.0教学系统,满足学生多样化学习需求。感兴趣的话点击此处,免费学习一下

    3年前 0条评论
  • 张艳的头像
    张艳
    这个人很懒,什么都没有留下~
    评论
    工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。

    人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。

    自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。

    优点:

    1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。

    2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。

    3、人工智能可以提高人类认识世界、适应世界的能力。

    缺点:

    1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。

    2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。

    3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。

    3年前 0条评论
  • 刘雨菥的头像
    刘雨菥
    这个人很懒,什么都没有留下~
    评论

    什么是人工智能?

    人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是认知、决策、反馈的过程。

    人工智能技术的细分领域有哪些?

    人工智能技术应用的细分领域:深度学习、计算机视觉、智能机器人、虚拟个人助理、自然语言处理—语音识别、自然语言处理—通用、实时语音翻译、情境感知计算、手势控制、视觉内容自动识别、推荐引擎等。

    下面,我们就每个细分领域,从概述和技术原理角度稍微做一下展开,供大家拓展一下知识。

    1、深度学习

    深度学习作为人工智能领域的一个重要应用领域。说到深度学习,大家第一个想到的肯定是AlphaGo,通过一次又一次的学习、更新算法,最终在人机大战中打败围棋大师。

    对于一个智能系统来讲,深度学习的能力大小,决定着它在多大程度上能达到用户对它的期待。。

    深度学习的技术原理:

    1.构建一个网络并且随机初始化所有连接的权重; 2.将大量的数据情况输出到这个网络中; 3.网络处理这些动作并且进行学习; 4.如果这个动作符合指定的动作,将会增强权重,如果不符合,将会降低权重; 5.系统通过如上过程调整权重; 6.在成千上万次的学习之后,超过人类的表现;

    2、计算机视觉

    计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉有着广泛的细分应用,其中包括,医疗领域成像分析、人脸识别、公关安全、安防监控等等。

    计算机视觉

    计算机视觉的技术原理:

    计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的小块任务。

    3、语音识别

    语音识别,是把语音转化为文字,并对其进行识别、认知和处理。语音识别的主要应用包括电话外呼、医疗领域听写、语音书写、电脑系统声控、电话客服等。

    语音识别

    语音识别技术原理:

    1、 对声音进行处理,使用移动函数对声音进行分帧; 2、 声音被分帧后,变为很多波形,需要将波形做声学体征提取; 3、 声音特征提取之后,声音就变成了一个矩阵。然后通过音素组合成单词;

    4、虚拟个人助理

    苹果手机的Siri,以及小米手机上的小爱,都算是虚拟个人助理的应用。

    虚拟个人助理技术原理:(以小爱为例)

    1、用户对着小爱说话后,语音将立即被编码,并转换成一个压缩数字文件,该文件包含了用户语音的相关信息; 2、由于用户手机处于开机状态,语音信号将被转入用户所使用移动运营商的基站当中,然后再通过一系列固定电 线发送至用户的互联网服务供应商(ISP),该ISP拥有云计算服务器; 3、该服务器中的内置系列模块,将通过技术手段来识别用户刚才说过的内容。

    5、自然语言处理

    自然语言处理(NLP),像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合,实现人机间自然语言的通信。

    NLP

    自然语言处理技术原理:

    1、汉字编码词法分析; 2、句法分析; 3、语义分析; 4、文本生成; 5、语音识别;

    6、智能机器人

    智能机器人在生活中随处可见,扫地机器人、陪伴机器人……这些机器人不管是跟人语音聊天,还是自主定位导航行走、安防监控等,都离不开人工智能技术的支持。

    智能机器人技术原理:

    人工智能技术把机器视觉、自动规划等认知技术、各种传感器整合到机器人身上,使得机器人拥有判断、决策的能力,能在各种不同的环境中处理不同的任务。智能穿戴设备、智能家电、智能出行或者无人机设备其实都是类似的原理。

    7、引擎推荐

    淘宝、京东等商城,以及36氪等资讯网站,会根据你之前浏览过的商品、页面、搜索过的关键字推送给你一些相关的产品、或网站内容。这其实就是引擎推荐技术的一种表现。

    Google为什么会做免费搜索引擎,目的就是为了搜集大量的自然搜索数据,丰富他的大数据数据库,为后面的人工智能数据库做准备。

    引擎推荐技术原理:

    推荐引擎是基于用户的行为、属性(用户浏览行为产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的浏览页面。

    3年前 0条评论
  • 玩趣~小飛的头像
    玩趣~小飛
    这个人很懒,什么都没有留下~
    评论

    人工智能研究的领域极为广泛,几乎涉及到人类创造所需要的诸如数学、专物理、信息属科学、心理学、生理学、医学、语言学、逻辑学以及经济、法律、哲学等重要学科。

    目前研究过程中通常采用两条途径,一条是由内到外,从揭示人脑的结构和人类智能的奥妙入手,目的是搞清楚大脑处理信息的过程,目标是创立信息处理的智能理论。

    另一条是由外到内,从应用计算机模拟人的智能活动入手,目标是研究开发智能机器或系统,力求达到与人的智能活动相类似的效果。总之,人工智能的最终目标是要搞清人工智能的有关原理,使计算机具有智慧更加聪明、更加有用。

    扩展资料:

    中国人工智能发展迅猛,中国政府也高度重视人工智能领域的发展。预计到2020年,中国人工智能产业规模将超过1500亿元,带动相关产业规模超过1万亿元。2017年全球新兴人工智能项目中,中国占据51%,数量上已经超越美国。但全球人工智能人才储备,中国却只有5%左右,人工智能的人才缺口超过500万。

    全球共有超过360所具有人工智能研究方向的高校,其中美国拥有近170所,中国仅30多所。虽然一些中国高校开设了相关课程,但总体上缺乏人工智能的基础教学能力,高校在独自培养具有动手能力的应用型人才上有所欠缺。

    4年前 0条评论
  • 彤彤的头像
    彤彤
    这个人很懒,什么都没有留下~
    评论

    人工智能的主要研究领域有:

    语言的学习与处理,知识表现,智能搜索,推理,规划,机器学习,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人工生命,神经网络,复杂系统,遗传算法人类思维方式,最关键的难题还是机器的自主创造性思维能力的塑造与提升。

    如今没有统一的原理或范式指导人工智能研究。许多问题上研究者都存在争论。其中几个长久以来仍没有结论的问题是:是否应从心理或神经方面模拟人工智能?或者像鸟类生物学对于航空工程一样,人类生物学对于人工智能研究是没有关系的?智能行为能否用简单的原则(如逻辑或优化)来描述?还是必须解决大量完全无关的问题?

    智能是否可以使用高级符号表达,如词和想法?还是需要“子符号”的处理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提议人工智能应归类为SYNTHETIC INTELLIGENCE,[29]这个概念后来被某些非GOFAI研究者采纳。

    扩展资料:

    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。

    参考资料:百度百科-人工智能(计算机科学的一个分支)

    4年前 0条评论
  • 夏欢乐的头像
    夏欢乐
    这个人很懒,什么都没有留下~
    评论
    Python语法简单,功能多样,是开发人员最喜爱的AI开发编程语言之一,因为它允许开发人员创建交互式,可解释式性,模块化,动态,可移植和高级的代码,这使得它比Java语言更独特。Python非常便携,可以在Linux,Windows等多平台上使用。另外,Python是一种多范式编程语言,支持面向对象,面向过程和函数式编程风格。由于它拥有简单的函数库和理想的结构,Python很适合神经网络和自然语言处理(NLP)解决方案的开发。
    但是,习惯于Python的开发人员在尝试使用其他语言时,难以调整状态使用不同的语法进行开发。与C ++和Java不同,Python在解释器的帮助下运行,在AI开发中这会使编译和执行变的更慢,不适合移动计算
    4年前 0条评论
  • Kira的头像
    Kira
    这个人很懒,什么都没有留下~
    评论

    人工智能研究的领域极为广泛,几乎涉及到人类创造所需要的诸如数学、物理、信息科学、心理学、生理学、医学、语言学、逻辑学以及经济、法律、哲学等重要学科。

    目前研究过程中通常采用两条途径,一条是由内到外,从揭示人脑的结构和人类智能的奥妙入手,目的是搞清楚大脑处理信息的过程,目标是创立信息处理的智能理论。另一条是由外到内,从应用计算机模拟人的智能活动入手,目标是研究开发智能机器或系统,力求达到与人的智能活动相类似的效果。总之,人工智能的最终目标是要搞清人工智能的有关原理,使计算机具有智慧更加聪明、更加有用。

    5年前 0条评论
  • 大魏的头像
    大魏
    这个人很懒,什么都没有留下~
    评论
    人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。人工智能和深度学习都只是算法的形式,用什么语言都可以,现在主流的就是C++和python两种,两种语言也各有相应的工具箱。如果要做科研,也可以用Matlab。
    5年前 0条评论
  • 洋洋妈的头像
    洋洋妈
    这个人很懒,什么都没有留下~
    评论
    “人工智能”这个词一开始是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是对人的意识、思维的信息过程的模拟。人工智能开发主要学哪门语言?
    据了解,人工智能目前主要是机器学习实现的,而目前做机器学习和数据挖掘的主要语言是python。但主要原因并不是python效率高或者python和人工智能有什么不可分割的联系,而是因为python是一门很好的胶水语言,可以方便的调用别人(用各种语言)写的库,而且表达清晰灵活。
    实际上,机器学习的核心知识和python并没有本质关系,python只是因为表达能力强,所以被广泛用于机器学习开发而已。因此目前来看,Python是人工智能的首选语言。
    人工智能时代的到来,让人们不禁产生了一些思考,不管是好是坏。但是无论结果如何,这个时代究竟还是来了:
    搭台,唱戏,台下的吃瓜群众懵懂生活、不知不觉间被卷入,在技术迭代发展的洪流中,向来如此。在基础技术维度,大数据管理和云计算技术已经在国内生根发芽,从IaaS、PaaS到SaaS,逐渐转变为大众化服务的基础平台:
    腾讯、阿里、百度、华为等巨头们依托自身数据、算法、技术和服务器优势正着力构建各自的产业链闭环。而在应用技术维度,在机器学习、模式识别和人机交互三条技术路线下附着的机器视觉、指纹识别、人脸识别、智能搜索、语言和图像理解、遗传编程等众多领域,正蓬勃兴盛,也诞生了多家代表性企业。
    也因为各企业的诞生,也有越来越多的企业需要人工智能人才。所以,如果大家掌握了Python,是否就能更好地在人工智能行业大展拳脚呢?
    5年前 0条评论
  • 小何的头像
    小何
    这个人很懒,什么都没有留下~
    评论

    人工智能用的编程语言:Python、Java、Lisp、Prolog、C ++、Yigo。 

    1、Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用。

    2、Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。一。

    3、Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言

    4、Prolog与Lisp在可用性方面旗鼓相当,据《Prolog Programming for ArTIficial Intelligence》一文介绍,Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效。

    5、C ++是世界上速度最快的编程语言,其在硬件层面上的交流能力使开发人员能够改进程序执行时间。 C ++对于时间很敏感,这对于AI项目是非常有用的,例如,搜索引擎可以广泛使用C ++。

    在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C ++被广泛地快速执行,游戏中的AI主要用C ++编码,以便更快的执行和响应时间。

    6年前 0条评论
  • 老话的头像
    老话
    这个人很懒,什么都没有留下~
    评论

    Python、Java、Lisp、Prolog、C ++、Yigo。

    Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。

    Python之所以适合AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。

    Java也是AI项目的一个很好的选择。它是一种面向对象的编程语言,专注于提供AI项目上所需的所有高级功能,它是可移植的,并且提供了内置的垃圾回收。另外Java社区也是一个加分项,完善丰富的社区生态可以帮助开发人员随时随地查询和解决遇到的问题。

    对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。

    7年前 0条评论
  • 许健的头像
    许健
    这个人很懒,什么都没有留下~
    评论

    人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具。一系列的进展在过去的几年中发生了:无事故驾驶超过300000英里并在三个州合法行驶迎来了自动驾驶的一个里程碑;IBM Waston击败了Jeopardy两届冠军;统计学习技术从对消费者兴趣到以万亿记的图像的复杂数据集进行模式识别。这些发展必然提高了科学家和巨匠们对人工智能的兴趣,这也使得开发者们了解创建人工智能应用的真实本质。

    谷歌的AI击败了一位围棋大师,是一种衡量人工智能突然的快速发展的方式,也揭示了这些技术如何发展而来和将来可以如何发展。

    哪一种编程语言适合人工智能?

    你所熟练掌握的每一种编程语言都可以是人工智能的开发语言。人工智能程序可以使用几乎所有的编程语言实现,最常见的有:Lisp,Prolog,C/C++,近来又有Java,最近还有Python.

    LISP

    像LISP这样的高级语言在人工智能中备受青睐,因为在各高校多年的研究后选择了快速原型而舍弃了快速执行。垃圾收集,动态类型,数据函数,统一的语法,交互式环境和可扩展性等一些特性使得LIST非常适合人工智能编程。

    PROLOG

    这种语言有着LISP高层和传统优势有效结合,这对AI是非常有用的。它的优势是解决“基于逻辑的问题”。Prolog提供了针对于逻辑相关问题的解决方案,或者说它的解决方案有着简洁的逻辑特征。它的主要缺点(恕我直言)是学起来很难。

    C/C++

    就像猎豹一样,C/C++主要用于对执行速度要求很高的时候。它主要用于简单程序,统计人工智能,如神经网络就是一个常见的例子。Backpropagation 只用了几页的C/C++代码,但是要求速度,哪怕程序员只能提升一点点速度也是好的。

    JAVA

    新来者,Java使用了LISP中的几个理念,最明显的是垃圾收集。它的可移植性使它可以适用于任何程序,它还有一套内置类型。Java没有LISP和Prolog高级,又没有C那样快,但如果要求可移植性那它是最好的。

    Python

    Python是一种用LISP和JAVA编译的语言。按照Norvig文章中对Lips和Python的比较,这两种语言彼此非常相似,仅有一些细小的差别。还有JPthon,提供了访问Java图像用户界面的途径。这是PeterNorvig选择用JPyhton翻译他人工智能书籍中程序的的原因。JPython可以让他使用可移植的GUI演示,和可移植的http/ftp/html库。因此,它非常适合作为人工智能语言的。

    在人工智能上使用Python比其他编程语言的好处

    优质的文档

    平台无关,可以在现在每一个*nix版本上使用

    和其他面向对象编程语言比学习更加简单快速

    Python有许多图像加强库像Python Imaging Libary,VTK和Maya 3D可视化工具包,Numeric Python, Scientific Python和其他很多可用工具可以于数值和科学应用。

    Python的设计非常好,快速,坚固,可移植,可扩展。很明显这些对于人工智能应用来说都是非常重要的因素。

    对于科学用途的广泛编程任务都很有用,无论从小的shell脚本还是整个网站应用。

    最后,它是开源的。可以得到相同的社区支持。

    AI的Python库

    总体的AI库

    AIMA:Python实现了从Russell到Norvigs的“人工智能:一种现代的方法”的算法

    pyDatalog:Python中的逻辑编程引擎

    SimpleAI:Python实现在“人工智能:一种现代的方法”这本书中描述过的人工智能的算法。它专注于提供一个易于使用,有良好文档和测试的库。

    EasyAI:一个双人AI游戏的python引擎(负极大值,置换表、游戏解决)

    机器学习库

    PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库。它也提供了多种预定义好的环境来测试和比较你的算法。

    PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法。它支持Linux和Mac OS X。

    scikit-learn旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具。它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包(numpy,scipy.matplotlib)紧密联系在一起的。

    MDP-Toolkit这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法(主成分分析、独立成分分析、慢特征分析),流型学习方法(局部线性嵌入),集中分类,概率方法(因子分析,RBM),数据预处理方法等等。 自然语言和文本处理库

    NLTK 开源的Python模块,语言学数据和文档,用来研究和开发自然语言处理和文本分析。有windows,Mac OSX和Linux版本。

    结论

    python因为提供像 scikit-learn的好的框架,在人工智能方面扮演了一个重要的角色:Python中的机器学习,实现了这一领域中大多的需求。D3.js JS中数据驱动文档时可视化最强大和易于使用的工具之一。处理框架,它的快速原型制造使得它成为一门不可忽视的重要语言。AI需要大量的研究,因此没有必要要求一个500KB的Java样板代码去测试新的假说。python中几乎每一个想法都可以迅速通过20-30行代码来实现(JS和LISP也是一样)。因此,它对于人工智能是一门非常有用的语言。

    案例

    做了一个实验,一个使用人工智能和物联网做员工行为分析的软件。该软件通过员工情绪和行为的分心提供了一个有用的反馈给员工,从而提高了管理和工作习惯。

    使用Python机器学习库,opencv和haarcascading概念来培训。建立了样品POC来检测通过安置在不同地点的无线摄像头传递回来基础情感像幸福,生气,悲伤,厌恶,怀疑,蔑视,讥讽和惊喜。收集到的数据会集中到云数据库中,甚至整个办公室都可以通过在Android设备或桌面点击一个按钮来取回。

    开发者在深入分析脸部情感上复杂点和挖掘更多的细节中取得进步。在深入学习算法和机器学习的帮助下,可以帮助分析员工个人绩效和适当的员工/团队反馈。

    7年前 0条评论
  • 希希的头像
    希希
    这个人很懒,什么都没有留下~
    评论

    Python,Java,Lisp,Prolog,C ++

    Python因为适用于大多数AI sub-field,所以渐有成为AI编程语言之首的趋势,而Lisp和Prolog因其独特的功能,所以在部分AI项目中卓有成效,地位暂时难以撼动。而Java和C++的自身优势将在AI项目中继续保持。

    7年前 0条评论
  • 大魏的头像
    大魏
    这个人很懒,什么都没有留下~
    评论
    人工智能的研究领域及应用范围十分广泛。

    例如,自动定理证明、推理、模式识别、专家知识系统、智能机器人、学习、博彩、自然语言理解等等。

    人工智能是近年来引起人们很大兴趣的一个领域:它的研究目标是用机器,通常为电子仪器、电脑等,尽可能地模拟人的精神活动,并且争取在这些方面最终改善并超出人的能力。

    8年前 0条评论
  • 唐莹的头像
    唐莹
    这个人很懒,什么都没有留下~
    评论
    最近比较火的:深度学习,智能控制,数据挖掘
    已经在应用的:自然语言理解,人工神经网络,各种机器人学
    人工智能的研究领域太广了,和很多学科都有交汇点,属于交叉学科。
    10年前 0条评论
  • 流沙的头像
    流沙
    这个人很懒,什么都没有留下~
    评论
    人工智能是近年来引起人们很大兴趣的一个领域:它的研究目标是用机器,通常为电子仪器、电脑等,尽可能地模拟人的精神活动,并且争取在这些方面最终改善并超出人的能力;其研究领域及应用范围十分广泛、例如,自动定理证明、推理、模式识别、专家知识系统、智能机器人、学习、博彩、自然语言理解等等。

    模式识别可能是人工智能这门学科中最基本也是最重要的一部分。简单来说,模式识别就是让电脑能够认识它周围的事物,使我们与电脑的交流更加自然与方便。它包括文字识别(读)、语音识别(听)、语音合成(说)、自然语言理解与电脑图形识别。现在的电脑可以说是又耸又哑,而且还是个瞎子,如果模式识别技术能够得到充分发展并应用于电脑,那我们就能够很自然地与电脑进行交流,开也不需要记那些英文的命令就可以立接向电脑下命令。这也为智能机器人的研究提供了必要条件,它能使机器人能够像人一样与外面的世界进行交流。

    在人工智能的应用当中最有趣的应该就是机器人了其实机器人的范围很广,不仅包括各种外型的智能机器人,还包括一些用于工业生产的、用于代替人类劳动的机器人、现在的机器人技术在制造只有某一种功能的机器人方面已经取得了一定的成果、但是要研制一种多功能、人性化的智能机器人,还需要不少时间。到了那时,我们在科幻片中看到的人类与机器人的矛盾不知会不会成为现实。

    专家系统具有一定的商业特性、它先把某一种行业(譬如医学、法律等等)的主要知识都输入到电脑的系统知识库里,再由设计者根据这些知识之间的特有关系和职业人员的经验,设计出一个系统,这个系统不仅能够为使用者提供这个行业知识的查询、建议等服务,更重要的是作为一个人工智能系统、必须具有自动推理、学习的能力。专家系统经常应用于各种商业用途,例如企业内部的客户息系统,决策支持系统,以及我们在世面上可以看见的医学顾问、法津顾问等软件。

    除此之外,在我们生活中的许多地方都能找到人工智能的影子。

    11年前 0条评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部