人工智能 好看吗?人工智能是什么原理?
美股 65
-
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。2年前 -
神话故事里“常常出现“分身术”,而这种“分身术”今天却可以“成为”现实,比如某个医生的病人实在太多,忙不过来,那么我们就给他想个办法,找个“替身”。这个“替身”就是计算机人工智能专家系统。
首先,这个系统必须把某个大夫行医的知识和经验学到手,即由专业工作人员把相关的文字资料组织好,其中包括这个大夫诊治过的病人的病历、诊断结果、所开处方等等,然后由计算机软件专家编制专门的程序把这些珍贵的原始资料输入计算机储存起来,这等于建立起一个这个大夫的知识库。要使计算机具有应用这些知识的本领,计算机就要具有推理、判断、演绎、决策等能力。这就是计算机专家系统的核心部分。当经过培训的医务人员利用这套人工智能专家系统接待病人时,只需将病人的症状特征、化验检查结果等原始数据输入计算机,计算机很快就会根据这些信息作出诊断,开出药方,就好像这个大夫亲自在给病人诊治一样。采用这种方法可以将许多不同优秀医学专家的经验制成计算机专家系统,这样做有两个好处:一方面可以保护和发扬我国传统医学的知识宝库,另一方面也可以大大减少病人排队等候治疗的时间,可使病人及时就诊。特别是在边远地区的医院,如果也安装上这样的专家系统,病人不仅能及时地得到最好医生的诊治,而且用不着长途跋涉,既节省了时间,又减少了费用,真是一举两得的好事。
电脑的进步与发展,为人类带来的方便是难以估量的,特别是在医学上,它的贡献更是成果卓著。
5年前 -
人工智能(Artificial Intelligence或简称AI)有时也称作机器智能,是指由人工制造出来的系统所表现出来的智能。这里,“人”也可以广义理解为任何生命体,比如说外星人,如果它们真的存在的话。通常人工智能是指通过普通计算机实现的智能。该词同时也指研究这样的智能系统是否能够实现,以及如何实现的科学领域。7年前
-
人工智能的原理 :
人工智能的科学研究要研究人的智慧的内部结构,相当于研究心理学的原理,更玄是不是,一般人不大会去做的大部分的人工智能研究集中在后者——工程实现上,知识:人的智能活动本质上就是获得和运用知识知识是智能的基础为了实现人工智能使机器具有智能就必须使它具有知识,表达:要采用适当的手段表达人的知识然后才能存储到机器中去这就是用知识表达要解决的问题对知识进行表达就是把知识表示成便于计算机存储和利用的某种数据结构知识表达方法又称为知识表示技术,其表示形式称为知识表示模式。9年前 -
蚁群算法简介 2006-11-2 12:17:00 程序开始运行,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。 其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。 预期的结果: 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。 原理: 为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。 然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?下面详细说明: 1、范围: 蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。 2、环境: 蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让信息素消失。 3、觅食规则: 在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应。 4、移动规则: 每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。 5、避障规则: 如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为。 7、播撒信息素规则: 每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少。 根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物。 问题: 说了这么多,蚂蚁究竟是怎么找到食物的呢? 在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则。首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰。这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对。这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物。 当然,在有一只蚂蚁找到了食物的时候,其他蚂蚁会沿着信息素很快找到食物的。 蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟。信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了。也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来。 引申 跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点: 1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。 引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。 既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了! 参数说明: 最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素。信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快。 错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性。 速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围。 记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前。而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈。10年前
