人工智能是什么编写的?人工智能的app有哪些?
-
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。3年前
-
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。3年前 -
人工智能编程语言是一类适应于人工智能和知识工程领域的、具有符号处理和逻辑推理能力的计算机程序设计语言。能够用它来编写程序求解非数值计算、知识处理、推理、规划、决策等具有智能的各种复杂问题。4年前
-
人工智能编程语言是一类适应于人工智能和知识工程领域的、具有符号处理和逻辑推理能力的计算机程序设计语言。能够用它来编写程序求解非数值计算、知识处理、推理、规划、决策等具有智能的各种复杂问题。
事实上,现在已经有多种对应于各种不同知识表示方式的人工智能编程语言。按所对应的知识表示方式不同。大体上可以区分为以下几类:
1.对应于产生式规则知识表示的语言。例如,由美国卡耐基·梅农大学的C·L·福基(C.L.Forgy)等人于1 977年开发的OPS(official production system),当时’就用它来为DEC公司开发了一个解决VAX计算机系统配置问题的专家系统X1/XCON。
2.对应于逻辑公式知识表示的语言。一种已广为应用的逻辑语言就是PROLOG。它是1 970年由法国马塞大学的 A.柯迈豪埃(Alain Colmerauer)所开发的。
3.对应于框架或语义网知识表示的语言。这是一类所谓“面向对象”的(object-oriented)语言。其中一个有代表性的语种就是Smalltalk。它是在1980年首创,后来发展了好几个版本,通常以发布的年份来标记,例如,第1个版本叫Smalltalk-80等等。
4.对应于函数知识表示或函数式程序设计风格的语言。首先是由计算机科学家J.巴科斯(J. Backus)在1978年发表的一篇获图灵奖的著名论文中提出。这篇论文的题目就叫做:“程序设计能够摆脱诺依曼风格吗?程序的函数风格及其代数”。它提出的函数式编程语言,虽然在理论上很完美,而且建立在坚实的数学基础之上,但是在常规计算机上很难实现。倒是早在20世纪50年代末、60年代初美国麻省理工学院的约翰·麦卡锡等人首先开发的列表处理语言LISP(LISt Processing)迄今仍然广泛用于编写人工智能应用程序,特别是用于开发专家系统。函数语言在解释执行机制上的特点是递归地由最内层向外层归约(reduction),而每次归约都是把一个函数“作用”,于它的变元而得出函数值的过程。所以又称这类语言为“作用式”(applicative)语言。
人工智能编程语言有一个共同的特点,那就是这些语言都是面向所要解决的问题、结合知识表示、完全脱离当代计算机的诺依曼结构特性而独立设计的;它们又处于比面向过程的高级编程语言更高的抽象层次。因此,用这些语言编写的程序,在现代计算机环境中,无论是解释或编译执行,往往效率很低。尤其当程序规模很大、很复杂时,将浪费大量系统资源(主要指处理机占用时间和存储空间占用量),使系统性能下降到难以容忍的地步。
4年前 -
人工智能在未来的发展潜力非常大,特别是将其运用在工业发展上。而人工智能是需要进行编写的,一般来说,人工智能需要3大部分组成。最重要的就是其核心算法。然后是数据库。最后是功能代码。一般的程序员不会直接开发核心算法,而是利用已经有的核心算法,开发出数据库和功能代码。当然也有类似于拉米罗这类大神,选择从核心算法开始搭建。比如其大家的鸭树系统就是一个公认的,非常强大的人工智能。
关于数据库方面,很多编写人工智能的程序小组不会选择就地重新搭建数据库,而是直接去寻求云数据库。利用云计算技术,为自己的人工智能程序配置好数据库。这样的数据库不仅能够随意的调整其大小,还拥有非常高的可靠性,成本也很低。比如腾讯云,阿里云,清华云都是这类云数据库。当然部分资金和实力非常雄厚的公司还是会采取自己搭建服务器。
而平台方面,国内使用最广泛的平台是百度的人工智能AI平台。我们印象中人工智能都是类似小爱同学之类的人工“智障”,但是百度的人工智能确实非常强大。百度开发的人工智能往往面向的是工厂,和大型的流水线生产。而并非是正常的家用,在整个世界上的排名当中,百度的人工智能技术稳稳的世界前三。
还有就是清华大学最近开发的一个人工智能平台,这个平台据说性能非常强大。而且可以直接利用清华云作为数据库。我最早听说的一个人工智能开发引擎是Tengine。这个引擎提供了很多AI算法,可以进行选择。而且还提供了很多可以设置的功能,根据我朋友的反馈,用起来非常舒服。
4年前 -
人工智能主要学习Python相关的编程。Python是一种解释型脚本语言,可以应用于人工智能、科学计算和统计、后端开发、网络爬虫等领域。
Python语法简单,功能多样,是开发人员最喜爱的AI开发编程语言之一。ython非常便携,可以在Linux,Windows等多平台上使用。另外,Python是一种多范式编程语言,支持面向对象,面向过程和函数式编程风格。
扩展资料:
人工智能专业主干课程:
1、认知与神经科学课程群
具体课程:认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程。
2、人工智能伦理课程群
具体课程:《人工智能、社会与人文》、《人工智能哲学基础与伦理》。
3、科学和工程课程群
新一代人工智能的发展需要脑科学、神经科学、认知心理学、信息科学等相关学科的实验科学家和理论科学家的共同努力,寻找人工智能的突破点,同时必须要以严谨的态度进行科学研究,让人工智能学科走在正确、健康的发展道路上。
4、先进机器人学课程群
具体课程:《先进机器人控制》、《认知机器人》、《机器人规划与学习》、《仿生机器人》。
5、人工智能平台与工具课程群
具体课程:《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》。
6、人工智能核心课程群
具体课程:《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》《机器学习、自然语言处理、计算机视觉等》。
参考资料:百度百科-Python、百度百科-人工智能
4年前 -
人工智能是一个包含很多学科的交叉学科,你需要了解计算机的知识、信息论、控制论、图论、心理学、生物学、热力学,要有一定的哲学基础,有科学方法论作保障。人工智能学习路线最新版本在此奉上:
首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析;
其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;
当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;
1、从基础学科来分析
人工智能主要得学习数学,计算机,算法,心理学,统计学,概率学。当然这些主要是基础的。要想深造还得涉猎更多的垂直行业,比如社会学领域的人工智能就离不开社科,经济学领域的人工智能离不开财经等等。
2、人工智能的方向
§机器学习
§深度学习
§模式识别
§计算机视觉
等等。不展开了,自己百度。
3、人工智能前景广阔
人工智能已经列入国家中长期发展规划。未来,不对,现在人工智能已经或正在渗入生产生活的方方面面。
目前人工智能专业的学习内容有: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。
需要的前置课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)从上面的专业课程内容来看,需要掌握的人工智能相关的知识内容还是很多的。
从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。
4年前 - 人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。4年前
- 学习人工智能前要具备三个部分的基础知识,具体包括数学基础、英语基础和编程技术。下面详细剖析每部分的要求。
第一点数学基础
作为计算机科学的一个分支,人工智能的本质还是处理的数据信息,所以数学的基础知识是必备的。
主要掌握的数学知识包括如下内容:
线性代数(向量)和概率论
高等数学(微积分、矩阵等)
离散数学(集合论等)
统计学(聚类分析、回归分析、分布等)
算法相关(人工神经网络、决策树、分层聚类等)
第二点英语基础
因为目前人工智能行业在国外发展的也比较好,很多技术文献资料都是外文的,如果想在这个方面有所成绩,就必须能够读懂英语资料。虽然英语水平不一定要达到四六级,但是要具备计算机英语基础,以后再慢慢学习专业的名词术语。
第三点编程技术
想学好人工智能,需要具备基础的编程能力,现在主流的JAVA/Python语都是要求掌握的,尤其Python语言在人工智能、网络爬虫、桌面界面开发、科学计算和统计方面都有广泛应用。
4年前 -
①机器学习的基础是数学,入门AI必须掌握一些必要的数学基础,但是并不是全部的数学知识都要学,只学工作上实际有用到的,比如是微积分、概率论、线性代数、凸优化等这些。
②数据分析里需要应用到的内容也需要掌握,但不是网上所说的从0开始帮你做数据分析的那种,而是数据挖掘或者说是数据科学领域相关的东西,比如要知道计算机里面怎么挖掘数据、相关的数据挖掘工具等等
补足了以上数学和数据挖掘基本知识,才可以正式进行机器学习算法原理的学习。③算法方面需要掌握一些基本的框架:python、spark、mllib、scikit-learning、pytorch、TensorFlow,数据方面需要懂得HQL、numpy、pandas,如果你本身是后台开发、app开发、数据分析、项目管理,则是一个学习算法的一个加分项。
4年前 -
“人工智能”(artificial
intelligence)简称ai。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。
人工智能是计算机科学的一个分支,人工智能是计算机科学技术的前沿科技领域。
人工智能与计算机软件有密切的关系。一方面,各种人工智能应用系统都要用计算机软件去实现,另一方面,许多聪明的计算机软件也应用了人工智能的理论方法和技术。例如,专家系统软件,机器博弈软件等。但是,人工智能不等于软件,除了软件以外,还有硬件及其他自动化和通信设备。
人工智能虽然是计算机科学的一个分支,但它的研究却不仅涉及到计算机科学,而且还涉及到脑科学、神经生理学、心理学、语言学、逻辑学、认知(思维)科学、行为科学和数学以及信息论、控制论和系统论等许多学科领域。因此,人工智能实际上是一门综合性的交叉学科和边缘学科。
,基于抽象概念的逻辑推理,就像我能根据文字来了解你的意思,我们的逻辑思维可以建立在抽象的名词,动词,形容词上,机器能理解这些意思而不是检索数据库来回答。
2,根据经验的判断力,就好像我们有自觉一样,我们可以预感某些事情,可以在陌生的环境下根据经验来适应环境。
3,机器情感,情感很难定义,比如你每天和你女朋友相处2小时,情感+5分,呵呵,骂人情感-2,打人-10……5年前 -
人工智能用的比较多的语言有:Python、JAVA 和相关语言、C/C++、JavaScript、R语言。
从事人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。有的还会需要了解域名比如com、top等等。
5年前 -
手机语音助手。
所谓智能手机是指在软件上由于Symbian操作系统的手机在整个中国智能手机市场份额所占最多,因此基于Symbian操作系统的软件也非常丰富。Windows Mobile的应用也很丰富,近些年随着Windows Mobile的市场份额的上升,基于Windows Mobile应用也在迅速增加。Palm上也有非常丰富的应用软件。Linux上的第三方软件目前还比较少。
采用Symbian操作系统的手机多为诺基亚和索尼爱立信生产。采用Windows Mobile操作系统的手机包括HTC(Dopod,Qtek)等,以及Mio生产的带有GPS功能的手机。采用Palm操作系统的手机包括HandSpring(与Palm合并)的Treo系列,以及香港生产商CSL的Xplore系列。采用Linux操作系统的手机有MOTO的E680,海尔的N60,飞利浦的968等。
电子类的智能是指:
具有全开放式平台,搭载了操作系统,在使用的同时,可自行安装和卸载各类应用软件,并对功能进行扩充和升级。
如各类智能手机、智能电视等。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
5年前 -
2018年已经是大数据和人工智能时代,这意味海量数据亟待程序化。而想要占领未来制高点,编程就是你绝对绕不过去的一项必学技能!过去,编程可能只是计算机行业才需要的技能。但现在,编程已经成为金融、数学、物理等行业的基本工具,而未来,编程完全有可能成为所有脑力劳动者的基础技能。
可以毫不夸张地估计,在未来几十年中,我们将见证人工智能蔓延到所有领域。离开人工智能,我们将无法做任何事。就像处在当先的互联网+的时代,不会使用电脑上网,你可能都会寸步难行,在未来的人工智能+的时代,不掌握数学和编程,谈何就业?
但还是会有人说程序员的工作太苦太累,是“人傻钱多身体不好”的代名词,事实真的是这样吗?程序员的真实生活是怎么样的?
1. 发展迅猛,更可翻身成高管
常有程序员被指“没有发展前景,只能在背后默默编程,成不了高层”,然而看看这些大佬的出身,有没有觉得脸有点疼?
校招趋之若鹜的BAT 3家公司的老板有2个是技术出身;微软的比尔盖茨,13岁学习编程;Facebook的扎克伯格,10岁学习编程;Google人工智能AlphaGo的创始人德米什哈萨比斯,8岁开始学习编程……
编程学习乃大势所趋,如果你现在不重视编程,以后就会错失成为某领域领头人的机会,还有可能被机器人取代……
2. 程序员薪水高
传说中的程序员都有着编不完的程、吃不完的外卖,然而见证了下图统计的程序员调查报告,你就知道自己之前对于程序员的看法有多么地偏执!
程序员年薪情况(数据来源于程序员客栈
普遍认为,程序员是一份高薪的职业。本次调查显示,年薪5w以下的程序员仅占6.2%,工作年限只有1- 2 年;大多数程序员年薪在9-30w,平均月薪达到1w以上,相比于其他行业已算是高薪;年薪 40 万以上平均年龄为 36 岁。
3. 程序员市场供不应求
在互联网圈子里,有一句话流传甚广:得人工智能者得天下。人工智能人才到底有多稀缺?打开某知名招聘网站,搜索“人工智能”后会出现数以百计的招聘岗位,极具诱惑力的薪酬让人眼前一亮。以人工智能算法工程师为例,该职位提供给大学毕业生的入门月薪少则2万,多则年薪百万。
全球AI领域技术人才分布地图
这种供需不平衡的现象不仅在中国有,在美国硅谷亦是如此。李开复去年曾公开透露,“在硅谷,做深度学习的人工智能博士生,现在一毕业就能拿到年薪200万到300万美元的录用通知,三大公司(谷歌、Facebook和微软)甚至都在用高到不合理的价钱挖人。”
5年前 -
小米科技做手机ROOM, 米柚系统里有语音助手,但是人类思维和感情
Alice是目前世界上最好的人工智能程序。
“人工智能”一词最初是在1956 年Dartmouth学会上提出的。人工智能的定义可以分为两部分,即“人工”和“智能”。二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
7年前 -
人脑有意识,电脑有意识吗?在科学极其发展的今天,电脑是否会超越人脑,人是否会成为电脑的奴隶?哲学不能不对这一问题做出回答。
人工智能是20世纪中叶科学技术所取得的重大成果之一。它的诞生与发展对人类文明产生了巨大的影响和效益。同时也引起了哲学意识与人工智能的理论探讨。
人工智能是相对于人类智能而言的。它是指用机械和电子装置来模拟和代替人类的某些智能。人工智能也称“机器智能”或“智能模拟”。当今人工智能主要是利用电子技术成果和仿生学方法,从大脑的结构方面模拟人脑的活动,即结构模拟。
人脑是智能活动的物质基础,是由上百亿个神经元组成的复杂系统。结构模拟是从单个神经元入手的,先用电子元件制成神经元模型,然后把神经元模型连接成神经网络(脑模型) ,以完成某种功能,模拟人的某些智能。如1957年美国康乃尔大学罗森布莱特等人设计的“感知机”;1975年日本的福岛设计的“认知机”(自组织多层神经网络) 。
电子计算机是智能模拟的物质技术工具。它是一种自动、高速处理信息的电子机器。它采用五个与大脑功能相似的部件组成了电脑,来模拟人脑的相应功能。这五个部件是:(1) 输入设备,模拟人的感受器(眼、耳、鼻等) ,用以接受外来的信息。人通过输入设备将需要计算机完成的任务、课题、运算步骤和原始数据采用机器所能接受的形式告诉计算机,并经输入设备把这些存放到存贮器中。(2) 存贮器,模拟人脑的记忆功能, 将输入的信息存储起来,供随时提取使用,是电子计算机的记忆装置。(3) 运算器,模拟人脑的计算、判断和选择功能,能进行加减乘除等算术运算和逻辑运算。(4) 控制器,人脑的分析综合活动以及通过思维活动对各个协调工作的控制功能,根据存贮器内的程序,控制计算机的各个部分协调工作。它是电脑的神经中枢。 (5)输出设备,模拟人脑的思维结果和对外界刺激的反映,把计算的结果报告给操作人员或与外部设备联系,指挥别的机器动作。
以上五部分组成的电脑是电子模拟计算机的基本部分,称为硬件。只有硬件还不能有效地模拟和代替人脑的某些功能,还必须有相应的软件或软设备。所谓软件就是一套又一套事先编好的程序系统。
人工智能的产生是人类科学技术进步的结果,是机器进化的结果。人类的发展史是人们利用各种生产工具有目的地改造第一自然( 自然造成的环境,如江河湖海、山脉森林等) ,创造第二自然( 即人化自然,如人造房屋、车辆机器等) 的历史。人类为了解决生理机能与劳动对象之间的矛盾,生产更多的财富,就要使其生产工具不断向前发展。人工智能,是随着科学技术的发展,在人们创造了各种复杂的机器设备,大大延伸了自己的手脚功能之后,为了解决迫切要延伸思维器官和放大智力功能的要求而产生和发展起来的。
从哲学上看,物质世界不仅在本原上是统一的,而且在规律上也是相通的。不论是机器、动物和人,都存在着共同的信息与控制规律,都是信息转换系统,其活动都表现为一定信息输入与信息输出。人们认识世界与在实践中获取和处理信息的过程相联系,改造世界与依据已有的信息对外界对象进行控制的过程相联系。总之,一切系统都能通过信息交换与反馈进行自我调节,以抵抗干扰和保持自身的稳定。因此,可以由电子计算机运用信息与控制原理来模拟人的某些智能活动。
从其它科学上来说,控制论与信息论就是运用系统方法,从功能上揭示了机器、动物、人等不同系统所具有的共同规律。以此把实际的描述形式化,即为现象和行为建立一个数学模型;把求解问题的方式机械化,即根据数学模型,制定某种算法和规则,以便机械地执行;把解决问题的过程自动化,即用符号语言把算法和规则编成程序,交给知识智能机器执行某种任务,使电子计算机模拟人的某些思维活动。所以,控制论、信息论是”智能模拟”的科学依据,“智能模拟”是控制论、信息论在实践中的最重要的实践结果。
人工智能是人类智能的必要补充,但是人工智能与人类智能仍存在着本质的区别:
1 、人工智能是机械的物理过程,不是生物过程。它不具备世界观、人生观、情感、意志、兴趣、爱好等心理活动所构成的主观世界。而人类智能则是在人脑生理活动基础上产生的心理活动,使人形成一个主观世界。因此,电脑与人脑虽然在信息的输入和输出的行为和功能上有共同之处,但在这方面两者的差别是十分明显的。从信息的输入看,同一件事,对于两个智能机具有相同的信息量,而对于两个不同的人从中获取的信息量却大不相同。“行家看门道,外行看热闹”就是这个道理。从信息的输出方面看,两台机器输出的同一信息,其信息量相等。而同一句话,对于饱于风霜的老人和天真幼稚的儿童,所说的意义却大不相同。
2 、人工智能在解决问题时,不会意识到这是什么问题,它有什么意义,会带来什么后果。电脑没有自觉性,是靠人的操作完成其机械的运行机能;而人脑智能,人的意识都有目的性,可控性,人脑的思维活动是自觉的,能动的。
3 、电脑必须接受人脑的指令,按预定的程序进行工作。它不能输出末经输入的任何东西。所谓结论,只不过是输入程序和输入数据的逻辑结果。它不能自主地提出问题,创造性地解决问题,在遇到没有列入程序的“意外”情况时,就束手无策或中断工作。人工智能没有创造性。而人脑功能则能在反映规律的基础上,提出新概念,作出新判断,创造新表象,具有丰富的想象力和创造性。
4 、人工机器没有社会性。作为社会存在物的人,其脑功能是适应社会生活的需要而产生和发展的。人们的社会需要远远超出了直接生理需要的有限目的,是由社会的物质文明与精神文明的发展程序所决定的。因此,作为人脑功能的思维能力,是通过社会的教育和训练,通过对历史上积累下来的文化的吸收逐渐形成的。人的内心世界所以丰富多采,是由于人的社会联系是丰富的和多方面的,人类智能具有社会性。所以要把人脑功能全面模拟下来,就需要再现人的思想发展的整个历史逻辑。这是无论多么“聪明”的电脑都做不到的。随着科学技术的发展,思维模拟范围的不断扩大,电脑在功能上会不断向人脑接近。但从本质上看,它们之间只能是一条渐近线,它们之间的界限是不会清除的。模拟是近似而不能是等同。
人工智能与人脑在功能上是局部超过,整体上不及。由于人工智能是由人造机器而产生的,因此,人工智能永远也不会赶上和超过人类智能。所谓“机器人将超过人奴役人”、“人将成为计算机思想家的玩物或害虫,…… 保存在将来的动物园”的“预言”是不能成立的。因为,它抹煞了人与机器的本质差别与根本界限。
人工智能充实和演化了辩证唯物主义的意识论。它进一步表明了意识是人脑的机能,物质的属性。电脑对人脑的功能的模拟,表明了意识并不是神秘的不可捉摸的东西,不是游离于肉体内外脱离人脑的灵魂,也不是人脑分泌出来的特殊物质形态,而是人脑的机能属性。这就进一步证明了意识本质的原理。
人工智能的出现深化了意识对物质的反作用的原理。人工智能是人类意识自我认识的产物。电脑的出现,意昧着人类意识已能部分地从人脑中分化出来,物化为物质的机械运动。这不仅延长了意识的器官,也说明意识能反过来创造”人脑”。这是意识对人脑的巨大的反作用。从意识与人脑的相互关系中进一步深化了意识对物质形态进步的反作用,意识作为最高的物质属性对于物质运动发展的反作用。
人工智能引起了意识结构的变化,扩大了意识论的研究领域。电脑作为一种新形态的机器而进入了意识器官的行列。它不仅能完成人脑的一部分意识活动,而且在某种功能上还优于人脑。如人脑处理信息和采取行动的速度不如电脑,记忆和动作的准确性不如电脑。因此,在现代科学认识活动中,没有人工智能,就不会有人类认识能力的突破性发展和认识范围的不断扩大。电脑不仅依赖于人,人也依赖于电脑。这就使得在意识论结构上增加了对人工智能的探讨以及对人机互补的关系的探讨。同时思维模拟,也把思维形式在思维中的作用问题突出出来,为意识论的研究提出了一个重要课提19年前
