人工智能产业是什么?人工智能现在处于哪个阶段?

孙鹏 美股 71

回复

共18条回复 我来回复
  • 杨丽的头像
    杨丽
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
    人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
    自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
    优点:
    1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
    2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
    3、人工智能可以提高人类认识世界、适应世界的能力。
    缺点:
    1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
    2年前 0条评论
  • 唐莹的头像
    唐莹
    这个人很懒,什么都没有留下~
    评论
    人工智能之父 John McCarthy说:人工智能就是制造智能的机器,更特指制作人工智能的程序。人工智能模仿人类的思考方式让计算机能智能的思考问题,人工智能通过研究人类大脑的思考、学习和工作方式,然后将研究结果作为开发智能软件和系统的基础。

    人工智能的概念很宽,所以人工智能也分很多种,我们按照人工智能的实力将其分成三大类:
    1、弱人工智能
    弱人工智能Artificial Narrow Intelligence (ANI):弱人工智能是擅长于单个方面的人工智能。比如有能战胜象棋世界冠军的人工智能,但是它只会下象棋,你要问它怎样更好地在硬盘上储存数据,它就不知道怎么回答你了。比如第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,Alpha Go其实也是一个弱人工智能。
    2、强人工智能
    强人工智能又称通用人工智能或完全人工智能, 指的是可以胜任人类所有工作的人工智能。一个可以称得上强人工智能的程序, 大概需要具备以下几方面的能力:存在不确定因素时进行推理,使用策略,解决问题,制定决策的能力;知识表示的能力,包括常识性知识的表示能力;规划能力;学习能力;使用自然语言进行交流沟通的能力;将上述能力整合起来实现既定目标的能力。
    3、超人工智能
    假设计算机程序通过不断发展,可以比世界上最聪明、最有天赋的人类还聪明,那么由此产生的人工智能系统就可以被称为超人工智能。超人工智能的定义最为模糊,因为没人知道, 超越人类最高水平的智慧到底会表现为何种能力。如果说对于强人工智能,我们还存在从技术角度进行探讨的可能性的话,那么,对于超人工智能,今天的人类大多就只能从哲学或科幻的角度加以解析了。

    2年前 0条评论
  • 涵涵妈妈的头像
    涵涵妈妈
    这个人很懒,什么都没有留下~
    评论

    现阶段的人工智能发展处于什么阶段如下:

    人工智能发展有三阶段,

    第一阶段是技术的智能化,但没有变成产业或者经济现象,

    第二阶段是经济的智能化,人工智能可以开始在广泛的经济领域施展魔力,它还分为前后两个阶段,前半段是通用能力的开发和资源的AI能力的平台化,后半段是全面产业化,行业应用和商业化开始进行。

    第三阶段是社会的智能化,“我们正处在经济的智能化从前半段向后半段的发展过程中,在无人驾驶等垂直行业上,初步证明了潜能。”

    2年前 0条评论
  • 大魏的头像
    大魏
    这个人很懒,什么都没有留下~
    评论

    人工智能(Artificial Intelligence,AI)是指计算机像人一样拥有智能能力,是一个融合计算机科学、统计学、脑神经学和社会科学的前沿综合学科,可以代替人类实现识别、认知,分析和决策等多种功能。如当你说一句话时,机器能够识别成文字,并理解你话的意思,进行分析和对话等。

    人工智能的起源:人工智能在五六十年代时正式提出,1950年,一位名叫马文·明斯基(后被人称为“人工智能之父”)的大四学生与他的同学邓恩·埃德蒙一起,建造了世界上第一台神经网络计算机。这也被看做是人工智能的一个起点。巧合的是,同样是在1950年,被称为“计算机之父”的阿兰·图灵提出了一个举世瞩目的想法——图灵测试。按照图灵的设想:如果一台机器能够与人类开展对话而不能被辨别出机器身份,那么这台机器就具有智能。而就在这一年,图灵还大胆预言了真正具备智能机器的可行性。

    1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看做是人工智能正式诞生的标志。就在这次会议后不久,麦卡锡从达特茅斯搬到了MIT。同年,明斯基也搬到了这里,之后两人共同创建了世界上第一座人工智能实验室——MIT AI LAB实验室。值得追的是,茅斯会议正式确立了AI这一术语,并且开始从学术角度对AI展开了严肃而精专的研究。在那之后不久,最早的一批人工智能学者和技术开始涌现。达特茅斯会议被广泛认为是人工智能诞生的标志,从此人工智能走上了快速发展的道路。

    人工智能的第一次高峰 在1956年的这次会议之后,人工智能迎来了属于它的第一段Happy Time。在这段长达十余年的时间里,计算机被广泛应用于数学和自然语言领域,用来解决代数、几何和英语问题。这让很多研究学者看到了机器向人工智能发展的信心。甚至在当时,有很多学者认为:“二十年内,机器将能完成人能做到的一切。”

    因此,人工智能项目停滞不前,但却让一些人有机可乘,1973年Lighthill针对英国AI研究状况的报告。批评了AI在实现“宏伟目标”上的失败。由此,人工智能遭遇了长达6年的科研深渊。

    2年前 0条评论
  • 孙鹏的头像
    孙鹏
    这个人很懒,什么都没有留下~
    评论

    一句话说:人工智能是机器模仿人类利用知识完成一定行为的过程

    人工智能可以分为弱智能和强智能,区分点是:是否能真正实现推理、思考、解决问题

    人工智能

    按程度可以分为人工智能、机器学习、深度学习。

    机器学习是利用已有数据,得出某种模型,利用模型预测结果

    深度学习是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据

    希望本回答可以帮助到你

    望采纳~

    2年前 0条评论
  • 甜甜的头像
    甜甜
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

    人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种复杂工作的理解是不同的。

    人工智能不同于传统的机器人,传统机器人只是代替人类做一些已经输入好的指令工作,而人工智能则包含了机器学习,从被动到主动,从模式化实行指令,到自主判断根据情况实行不同的指令,这就是区别

    2年前 0条评论
  • 壮壮的头像
    壮壮
    这个人很懒,什么都没有留下~
    评论
    人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。


    人工智能的发展大概分为三个阶段。
    第一个阶段,我们称之为计算智能,即让计算能存会算,机器开始像人类一样会计算,传递信息。
    第二个阶段,我们称之为认知智能,能说会听,能看会认。例如,完全独立驾驶的无人驾驶汽车、自主行动的机器人。它的价值是可以全面辅助或替代人类部分工作。
    第三个阶段,我们称之为感知智能,是目前的最高阶段,它要求机器或系统能理解会思考,这是人工智能领域正在的努力的目标。

    2年前 0条评论
  • 卢京辉的头像
    卢京辉
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

      “人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或着人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

      关于什么是“智能”就有很多问题。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维)等等问题。

      人唯一了解的智能是人本身的智能,这是普遍认同的观点。

      但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。

      因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。

      人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。

      人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。

      人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

      1)知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。

      2)常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。

      3)问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。

      4)搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。

      5)机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。

      6)知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。

      推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。

      人工智能的研究可以分为几个技术问题,其分支领域主要集中在解决具体问题,其中之一是如何使用各种不同的工具完成特定的应用程序。

      AI的核心问题包括推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。强人工智能目前仍然是该领域的长远目标。目前比较流行的方法包括统计方法,计算智能和传统意义的AI。

      目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。

    2年前 0条评论
  • 刘雨菥的头像
    刘雨菥
    这个人很懒,什么都没有留下~
    评论
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。人工智能产业可划分为基础层、技术层与应用层三部分。

    什么是人工智能技术什么是人工智能技术

    1、基础层

    可以按照算法、算力与数据进行再次划分。算法层面包括监督学习、非监督学习、强化学习、迁移学习、深度学习等内容;算力层面包括AI芯片和AI计算架构;数据层面包括数据处理、数据储存、数据挖掘等内容。

    2、技术层

    根据算法用途可划分为计算机视觉、语音交互、自然语言处理。计算机视觉包括图像识别、视觉识别、视频识别等内容;语音交互包括语音合成、声音识别、声纹识别等内容;自然语言处理包括信息理解、文字校对、机器翻译、自然语言生成等内容。

    3、应用层

    主要包括AI在各个领域的具体应用场景,比如自动驾驶、智慧安防、新零售等领域。

    人工智能包含了以下7个关键技术。

    1、机器学习

    机器学习(Machine Learning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。

    2、知识图谱

    知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。

    3、自然语言处理

    自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。

    4、人机交互

    人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

    5、计算机视觉

    计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

    6、生物特征识别

    生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。

    7、VR/AR

    虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。

    3年前 0条评论
  • 王月的头像
    王月
    这个人很懒,什么都没有留下~
    评论

    人工智能(AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。应用范围包括:计算机科学,金融贸易,医药,诊断,重工业,运输,远程通讯,法律,科学发现,玩具和游戏。

    • 一个由人类创造的带有智能的实体。

    • 无需明确指令就能够自动完成任务。

    • 能够理性甚至感性地思考和行动。人工智能的历史

      智慧生物这一概念由来已久。确切地说,早在中国和埃及开始建造机械的时候,古希腊就已经有关于机器人的神话传说了。而现代人工智能的起源则可以追溯到古典哲学家对于人类思维符号系统的描述。再到上世纪 40 年代和 50 年代,大量来自于不同领域的科学家发起了关于构建类脑的可能性的讨论,掀起了有关人工智能的研究热潮,并且于 1956 年在新罕布尔州汉诺威市达特茅斯学院的一次学术会议上,明确成立了人工智能这一学科。“Artificial Intelligence” 就是由 McCarthy 创造的, McCarthy 现在是公认的 AI 之父。

      尽管在过去的几十年里,科学家们得到了良好的基金资助,并且付出了持续努力,但是仍旧没能够使得机器具备智能。因此,70 年代到 90 年代,科学家们不得不面临基金资助的缩减,这一时期也被成为“人工智能的冬天”。幸运的是,1990 年底,美国公司又再次对 AI 提起兴趣。同时,日本政府也提出开发第五代计算机助力推进 AI 发展的政府计划。直至 1997 年,IBM 开发的深蓝里程碑式地打败国际象棋冠军 Garry Kasparov。

      得益于计算机硬件的进步,AI 不断发展。政府、公司、企业都开始在某些领域成功地应用 AI 技术。过去 15 年间,Amazon, Google, Baidu 等公司都通过 AI 技术撬动了巨大的商业利益。今天的 AI,已经被嵌入进我们日常使用的网络服务。并且 AI 在各个行业发挥作用的同时,也极大地带动了股票市场。

    4年前 0条评论
  • 洋洋妈的头像
    洋洋妈
    这个人很懒,什么都没有留下~
    评论
    “人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域…”
    4年前 0条评论
  • 苑利平的头像
    苑利平
    这个人很懒,什么都没有留下~
    评论
    人工智能,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。
    4年前 0条评论
  • 有有的头像
    有有
    这个人很懒,什么都没有留下~
    评论

    人工智能主要就是让代替人工的机器拥有和人类相似的智力,而在百度百科中对人工智能的定义为开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

    其实人工智能就是计算机科学的一个分支,在研究人类智能的根本原因中,引发了这种通过模拟人类的行为方法来让机器也拥有和人类相似的能力,也是因为拥有这种能力,被广泛的实用,比如机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能在出现开始,所受的关注也是日益增多,进而人们对它的要求也是变得多了,为了满足人们的要求,人工智能的技术也是在不断的完善,并使用范围也随之增加,而未来随着科技的更加先进,相信人工智能的技术也会更加的成熟。人工智能可以对人类的意识、思维的信息过程进行模拟,所以人工智能拥有的不是人的智能,而是和人类非常相似的一种能力,这种能力随着发展甚至会有可能超过人类的智能。

    人工智能的研究是非常复杂的,如果想要从事这项研究的话,那必须要对计算机知识,心理学和哲学等有了解。人工智能因其是个比较广泛的科学的特性,而由多种领域组成,像机器学习、计算机视觉等等,其实,总结下来就是,人工智能主要研究就是让机器可以像人一样的工作,代替人类做些比较复杂的事情。

    人工智能发展以来主要的使用范围是机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。

    另外人工智能也可以分为两部分理解,也就是人工与智能,人工就是人工系统,对于这个定义大家的看法还都是非常相似的。而对于智能的理解就比较多了,并且也不统一,因为这涉及到一些意识、思维、自我等等的问题,比较复杂,而人类了解的智能其实就是自己本身的智能,不过对于自身的理解也是有限的,对于人的智能的了解更是有限,所以对于智能的定义当然没有一个统一的答案了。

    人工智能以其拥有简单智能的特点主要使用在计算机领域中,并受到很大的重视。

    人工智能_线性代数基础-矩阵的运算_加减法_转置

    4年前 0条评论
  • 肖佳梦的头像
    肖佳梦
    这个人很懒,什么都没有留下~
    评论

    说起当下热议的人工智能,不得不提到风光无二的AlphaGo 。AlphaGo 战胜世界围棋冠军李世石,引起了人类对人工智能的兴趣。而人工智能的概念,其实早有提出。

    就人工智能的发展阶段而言,可以分为三个阶段。

    1)1956年-1980年

    1956年达特茅斯会提出了人工智能这一词汇,标志着人工智能正式诞生。

    而这个阶段,人工智能已经在问题求解以及语言处理等方面取得了一些进步。但是,当时的技术条件并不能实现预期的目标。到了70年代,投资者和政府开始收缩人工智能经费,人工智能开始进入低谷期。

    2)1980年-1993年

    80年代,人工智能专家系统崭露头角,商业价值被广泛接受,人工智能研究重新兴起。但并没有持续多久,就被生产出来的个人电脑在性能上完全碾压,远远超过使用了AI技术的LISP机,AI再一次经历了寒冬。

    3)1993年-至今

    之后以神经网络技术为代表的AI技术逐步发展,人工智能开始进入缓慢发展期。1997年深蓝战胜国际象棋世界冠军卡斯帕罗夫,使得AI再次被热议。而随着现在科技的快速发展,硬件成本不断降低,数据量积累不断增大,AI技术不断成熟,人工智能又开始进入爆发期。各种人工智能产品开始如雨后春笋,不断的发展壮大起来。

    4年前 0条评论
  • 彤彤的头像
    彤彤
    这个人很懒,什么都没有留下~
    评论
      AI(Artificial Intelligence,人工智能) 。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的, 现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确, 因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展, 一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。

      人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

      知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。

      常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。

      问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。

      搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。

      机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。

      知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。

      一、人工智能的历史

      人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。这可是不是一个容易的事情。 如果希望做出一台能够思考的机器,那就必须知识什么是思考,更进一步讲就是什么是智慧,它的表现是什么,你可以说科学

      家有智慧,可你决不会说一个路人什么也不会,没有知识,你同样不敢说一个孩子没有智慧,可对于机器你就不敢说它有智慧了吧,那么智慧是如何分辨的呢?我们说的话,我们做的事情,我们的想法如同泉水一样从大脑中流出,如此自然,可是机器能够吗,那么什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。

      在定义智慧时,英国科学家图灵做出了贡献,如果一台机器能够通过称之为图灵实验的实验,那它就是智慧的,图灵实验的本质 就是让人在不看外型的情况下不能区别是机器的行为还是人的行为时,这个机器就是智慧的。不要以为图灵只做出这一点贡献就会名垂表史,如果你是学计算机的就会知道,对于计算机人士而言,获得图灵奖就等于物理学家获得诺贝尔奖一样,图灵在理论上奠定了计算机产生的基础,没有他的杰出贡献世界上根本不可能有这个东西,更不用说什么网络了。

      科学家早在计算机出现之前就已经希望能够制造出可能模拟人类思维的机器了,在这方面我希望提到另外一个杰出的数学家,哲学家布尔,通过对人类思维进行数学化精确地刻画,他和其它杰出的科学家一起奠定了智慧机器的思维结构与方法,今天我们的计算机内使用的逻辑基础正是他所创立的。

      我想任何学过计算机的人对布尔一定不会陌生,我们所学的布尔代数,就是由它开创的。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具了,在以后的岁月中,无数科学家为这个目标努力着,现在人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,现在计算机似乎已经变得十分聪明了,刚刚结束的国际象棋大赛中,计算机把人给胜了,这是人们都知道的,大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。

      现在人类已经把计算机的计算能力提高到了前所未有的地步,而人工智能也在下世纪领导计算机发展的潮头,现在人工智能的发展因为受到理论上的限制不是很明显,但它必将象今天的网络一样深远地影响我们的生活。

      在世界各地对人工智能的研究很早就开始了,但对人工智能的真正实现要从计算机的诞生开始算起,这时人类才有可能以机器的实现人类的智能。AI这个英文单词最早是在1956年的一次会议上提出的,在此以后,因此一些科学的努力它得以发展。人工智能的进展并不象我们期待的那样迅速,因为人工智能的基本理论还不完整,我们还不能从本质上解释我们的大脑为什么能够思考,这种思考来自于什么,这种思考为什么得以产生等一系列问题。但经过这几十年的发展,人工智能正在以它巨大的力量影响着人们的生活。

      让我们顺着人工智能的发展来回顾一下计算机的发展,在1941年由美国和德国两国共同研制的第一台计算机诞生了,从此以后人类存储和处理信息的方法开始发生革命性的变化。第一台计算机的体型可不算太好,它比较胖,还比较娇气,需要工作在有空调的房间里,如果希望它处理什么事情,需要大家把线路重新接一次,这可不是一件省力气的活儿,把成千上万的线重新焊一下我想现在的程序员已经是生活在天堂中了。

      终于在1949发明了可以存储程序的计算机,这样,编程程序总算可以不用焊了,好多了。因为编程变得十分简单,计算机理论的发展终于导致了人工智能理论的产生。人们总算可以找到一个存储信息和自动处理信息的方法了。

      虽然现在看来这种新机器已经可以实现部分人类的智力,但是直到50年代人们才把人类智力和这种新机器联系起来。我们注意到旁边这位大肚子的老先生了,他在反馈理论上的研究最终让他提出了一个论断,所有

      人类智力的结果都是一种反馈的结果,通过不断地将结果反馈给机体而产生的动作,进而产生了智能。我们家的抽水马桶就是一个十分好的例子,水之所以不会常流不断,正是因为有一个装置在检测水位的变化,如果水太多了,就把水管给关了,这就实现了反馈,是一种负反馈。如果连我们厕所里的装置都可以实现反馈了,那我们应该可以用一种机器实现反馈,进而实现人类智力的机器形式重现。这种想法对于人工智能早期的有着重大的影响。

      在1955的时候,香农与人一起开发了The Logic TheoriST程序,它是一种采用树形结构的程序,在程序运行时,它在树中搜索,寻找与可能答案最接近的树的分枝进行探索,以得到正确的答案。这个程序在人工智能的历史上可以说是有重要地位的,它在学术上和社会上带来的巨大的影响,以至于我们现在所采用的方法思想方法有许多还是来自于这个50年代的程序。

      1956年,作为人工智能领域另一位著名科学家的麦卡希(就是右图的那个人)召集了一次会议来讨论人工智能未来的发展方向。从那时起,人工智能的名字才正式确立,这次会议在人工智能历史上不是巨大的成功,但是这次会议给人工智能奠基人相互交流的机会,并为未来人工智能的发展起了铺垫的作用。在此以后,工人智能的重点开始变为建立实用的能够自行解决问题的系统,并要求系统有自学习能力。在1957年,香农和另一些人又开发了一个程序称为General Problem Solver(GPS),它对Wiener的反馈理论有一个扩展,并能够解决一些比较普遍的问题。别的科学家在努力开发系统时,右图这位科学家作出了一项重大的贡献,他创建了表处理语言LISP,直到现在许多人工智能程序还在使用这种语言,它几乎成了人工智能的代名词,到了今天,LISP仍然在发展。

      在1963年,麻省理工学院受到了美国政府和国防部的支持进行人工智能的研究,美国政府不是为了别的,而是为了在冷战中保持与苏联的均衡,虽然这个目的是带点火药味的,但是它的结果却使人工智能得到了巨大的发展。其后发展出的许多程序十分引人注目,麻省理工大学开发出了SHRDLU。在这个大发展的60年代,STUDENT系统可以解决代数问题,而SIR系统则开始理解简单的英文句子了,SIR的出现导致了新学科的出现:自然语言处理。在70年代出现的专家系统成了一个巨大的进步,他头一次让人知道计算机可以代替人类专家进行一些工作了,由于计算机硬件性能的提高,人工智能得以进行一系列重要的活动,如统计分析数据,参与医疗诊断等等,它作为生活的重要方面开始改变人类生活了。在理论方面,70年代也是大发展的一个时期,计算机开始有了简单的思维和视觉,而不能不提的是在70年代,另一个人工智能语言Prolog语言诞生了,它和LISP一起几乎成了人工智能工作者不可缺少的工具。不要以为人工智能离我们很远,它已经在进入我们的生活,模糊控制,决策支持等等方面都有人工智能的影子。让计算机这个机器代替人类进行简单的智力活动,把人类解放用于其它更有益的工作,这是人工智能的目的,但我想对科学真理的无尽追求才是最终的动力吧。

      二、人工智能的应用领域

      1、问题求解。
      人工智能的第一大成就是下棋程序,在下棋程度中应用的某些技术,如向前看几步,把困难的问题分解成一些较容易的子问题,发展成为搜索和问题归纳这样的人工智能基本技术。今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。

      2、逻辑推理与定理证明。
      逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的题。定理寻找一个证明或反证,不仅需要有根据假设进行演绎的能力,而且许多非形式的工作,包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化,因此,在人工智能方法的研究中定理证明是一个极其重要的论题。

      3、自然语言处理。
      自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人注目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。

      4、智能信息检索技术。
      受”()*+ (*) 技术迅猛发展的影响,信息获取和精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将人工智能技术应用于这一领域的研究是人工智能走向广泛实际应用的契机与突破口。

      5、专家系统。
      专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“ 专家系统”或“ 知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。如在矿物勘测、化学分析、规划和医学诊断方面,专家系统已经达到了人类专家的水平。成功的例子如:PROSPECTOR系统发现了一个钼矿沉积,价值超过1亿美元。DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用。MY CIN系统可以对血液传染病的诊断治疗方案提供咨询意见。经正式鉴定结果,对患有细菌血液病、脑膜炎方面的诊断和提供治疗方案已超过了这方面的专家。

      三、人工智能理论的数学化趋势越来越突出

      在现代科技高速发展的今天,许多科技理论都有赖于数学提供证明,有赖于数学对其的仿真。人工智能的发展也不例外,如何把人们的思维活动形式化、符号化,使其得以在计算机上实现,就成为人工智能研究的重要课题。在这方面,逻辑的有关理论、方法、技术起着十分重要的作用,它不仅为人工智能提供了有力的工具,而且也为知识的推理奠定了理论基础。人工智能中用到的逻辑可概括地分为两大类。一类是经典命题逻辑和一阶谓词逻辑,其特点是任何一个命题的真值或者是“真”,或者是“假”,二者必居其一。这一类问题可以用数学里的经典逻辑理论来解决。世界上事物千差万别,形形色色,除了确定性的事物或概念外,更广泛存在的是不确定性的事物或概念。这些不确定的事物是无法用经典逻辑理论来解决的。因此我们需要发展新的数学工具来表示这些问题。目前在人工智能中对不确定性的事物或概念是通过运用多值逻辑、模糊理论及概率来描述、处理的。多值逻辑、模糊理论及概率虽然都是通过在〔!,”〕上取值来刻画不确定性,但三者之间又存在着很大区别。多值逻辑是通过在真(”)与假(!)之间增加了若干中介真值来描述事物为真的程度的,但它把各个中介真值看作是彼此完全分立的,界限分明。而模糊理论认为不同的中介真值之间没有明确的界限,表现了不同中介值相互贯通、渗透的特征,从而更好地反映了不确定性的本质。概率用来度量事件发生的可能性,而事件本身的含义是明确的,只是在一定的条件下它可能不发生,它与模糊理论是从两个不同的角度来描述不确定性的,因而有人称模糊理论描述了事物内在的不确定性,而概率描述的是事物外在的不确定性。由上可以看出,数学使得人工智能能很好的模拟人类智能,大大推动了人工智能的向前发展。现在人工智能中还有一些问题用现在的数学很难表示出来,相信在数学知识不断发展之后,这些问题能很快得到解决。

      五、人工智能的发展现状及前景

      目前绝大多数人工智能系统都是建立在物理符号系统假设之上的。在尚未出现能与物理符号系统假设相抗衡的新的人工智能理论之前,无论从设计原理还是从已取得的实验结果来看,SOAr 在探讨智能行为的一般特征和人类认知的具体特征的艰难征途上都取得了有特色的进展或成就,处在人工智能研究的前沿。
      80 年代,以Newell A 为代表的研究学者总结了专家系统的成功经验,吸收了认知科学研究的最新成果,提出了作为通用智能基础的体系结构Soar。目前的Soar 已经显示出强大的问题求解能力。在Soar中已实现了30 多种搜索方法,实现了若干知识密集型任务(专家系统) ,如RI 等。rOOks 提出了人工智能的一种新的途径。它认为无需概念或者说无需符号表示,智能系统的能力可以逐步进化。在它的研究中突出4 个概念:(1) 所处的境遇 机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2) 具体化 机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后立即会有反馈。(3) 智能 智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4) 浮现 从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。

      五、结语

      人工智能不单单需要逻辑思维与模仿,科学家们对人类大脑和神经系统研究得越多,他们越加肯定:情感是智能的一部分,而不是与智能相分离的。因此人工智能领域的下一个突破可能不仅在于赋予计算机更多的逻辑推理能力,而且还要赋予它情感能力。许多科学家断言,机器的智能会迅速超过阿尔伯特·爱因斯坦和霍金的智能之和。到下世纪中叶,人类生命的本质也会发生变化。神经植入将增强人类的知识和思考能力,并且开始向一种复合的人/机关系过渡,这种复合关系将使人类逐渐停止对生物机体的需求。大量非常微小的机器人将在大脑的感觉区里占据一席之地,并且创造出真假难辨的虚拟现实的仿真效果。

      人工智能的实现,不是天方夜谭。虽然会很辛苦,但是没有人规定只有人类可以思考。就像是生命的不同表现形式,动物,植物,微生物,是不同的生命的形式。人类可以以未知的方式思考,计算机也可以以另一种(并非一定要和人相同的)形式思考。

      著名软件公司ADOBE的专业制图软件Illustrator 的一种文件格式!

      AI ( Artificial Intelligence ):人工智能。就是指计算机模仿真实世界的行为方式与人类思维与游戏的方式的运算能力。那是一整套极为复杂的运算系统与运算规则。

      =============================================================
      此外,AI还代表ALLEN IVERSON(阿伦·艾佛森),他生于美国,是全世界最好的篮球联盟——“NBA”96黄金一代的代表人物,是NBA有史以来最好的后卫之一,他以183cm身高在众多魁梧的球员中灵动跳跃,独领风骚。他先后摘取过NBA得分王、抢断王等称号,还在2001年带领76人队闯进NBA总决赛。他以特立独行的风格和满身的纹身成为全球篮球青少年疯狂追捧的偶像。

      ————————————————————————————————————
      歌手姓名: AI 英文名: AI
      唱片公司: 环球唱片(Universal Music)
      国 籍: 日本 语 言: 日语
      兴 趣:
      个人经历: *东瀛首席嘻哈女力、R&B歌姬 她是张力十足的嘻哈女力,也是柔情似水的R&B美声歌姬,AI,22岁的她在时尚一派与安室奈美惠合唱‘Uh、Uh…’,并在珍娜杰克森的音乐录影带中展现绝赞舞技,除了过人的歌舞才华之外,词曲创作力更是傲视东瀛R&B舞台,在嘻哈音乐大厂Def Jam Japan签下一纸合约之后,发行‘ORIGINAL A.I./原创A.I.’专辑立刻赢得媒体一致肯定,除了拿下SPACE SHOWER TV的R& B音乐录影带大奖外,更代表日本参加2004年MTV BUZZ ASIA演唱会,一举打进亚洲市场。
      以过人演唱的天赋而获得日本“新时代音乐代言人”殊荣的HIP HOP小天后AI,近日参加了在台北举行的“台北流行音乐节”,同行的日本歌手还有一青窈以及藤木直人。在这场盛大的音乐节上,AI以她新颖而独特的演唱方式以及活力四射的表演令在场6万歌迷为之倾倒。 AI有着四分之一的意大利血统,骨子里就透出一种浪漫和前卫的气息。而她又是在美国长大,接触的音乐也很多元化。由于AI的母亲非常喜欢音乐,所以从小她就深受各种类型音乐的熏陶。在15岁时,AI还曾经参加过珍妮·杰克逊的MTV《GO DEEP》的录制。不过,在日本出道时却并不顺利,因为与工作人员在音乐理解上的不同,当大家对自己的音乐反映很冷淡时,她就很想去敲墙壁,可见其可爱之处。不过,AI并没有被现实所击败,仍然坚持走HIP HOP这条音乐路线,使得她的音乐风格也带给人们一种全新的感受。在今年日本最权威的公信榜票选中,AI从众多新晋女性中脱颖而出,成为新一代音乐天后接班人。对此,AI自己也非常满意,她表示自己想要成为一个很有朝气的歌手,给更多的人带来幸福感。这次的台北流行音乐节,AI也是做足了准备。除了带上偕同一起演出的DJ、化妆师、造型师、人声乐手AFURA以外,连日本报知新闻、电通、朝日电视台等日本媒体的高层人士以及自己经济公司的社长也都一同前来,浩浩荡荡23人的访华队伍令AI颇有面子。而赴台之前,AI也时常向安室奈美惠等曾经去过台湾的人请教,以进一步了解台湾。听说台北美食多多,AI兴奋地说想要常常小笼包、路边摊,所以这次的台湾之行,除了要参加音乐节和拍摄特辑,还顺带要向日本观众介绍台湾美食,这也使AI欣喜不已。 台湾表演大获成功后,AI也表示自己想要更了解华人音乐,有机会的话,也希望能够像平井坚、安室奈美惠等日本歌手一样,可以在台湾等地开演唱会,和台湾的歌手同台献艺。其实AI出国献艺已经不是第一次,在几个月前的韩国汉城MTV BUZZ ASIA演唱会中,AI也曾把歌词改为韩文,而这次为了更贴近观众,AI也把歌词改成了中文来演唱。为期四天的台湾之行,AI让更多的人领略了她的“小天后”风采,也顺便为自己今秋将要展开的全国巡演造势。

    4年前 0条评论
  • 李红的头像
    李红
    这个人很懒,什么都没有留下~
    评论
    人工智能(英语:Artificial Intelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体(intelligent agent)的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。约翰·麦卡锡于1955年的定义是“制造智能机器的科学与工程”。安德里亚斯·卡普兰(Andreas Kaplan)和迈克尔·海恩莱因(Michael Haenlein)将人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。
    AI的核心问题包括建构能够跟人类似甚至超卓的推理、知识、规划、学习、交流、感知、移物、使用工具和操控机械的能力等。当前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。 思维来源于大脑,而思维控制行为,行为需要意志去实现,而思维又是对所有数据采集的整理,相当于数据库,所以人工智能最后会演变为机器替换人类。
    2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
    4年前 0条评论
  • 洋洋妈的头像
    洋洋妈
    这个人很懒,什么都没有留下~
    评论

    人工智能就是由人类的想象力和创造力所创造出来的,可以像人类一样思考的拥有机械身躯的人类形象。

    人工智能会出现是源自从古代开始就觉得人类拥有精神世界和肉体世界,两个世界是相对独立而又合二为一的。

    在科学技术落后的时代,有人提出人类死亡的时候,肉体会消亡,精神却会离开肉体,不会消亡,我可以找相关的物体来代替人类的身躯,如果可以把精神植入相关的物体,那么人类就可以长生不老。

    这种理论局限于没技术还没有出现的古代,受到有各种因素的影响,没有得到实施,不能变成现实,于是也出现了炼金术或者长生不老药,冰封活人这些手段来延长人的寿命,出现了木牛流马,给人类带来便利的工具出现,由于技术相对落后,不能给人类带来更多的便利。

    由于这些工具没有一定的能源来驱动,所以处于停滞阶段,由于科学技术的高速发展,发明了计算机,自从给人类世界带来带来翻天覆地变化的发明,此计算机称之为电脑,顾名思义就是不是可以拥有人类思考能力的机器。

    电脑可以给人类带来更多的便利,但是却没有人类的思考能力需要,输入程序才能实现功能,不具备人类大脑思考的能力和学习能力。

    直到谷歌公司出现了alpha机器人,具备强大的数据运算能力和数据分析能力,还具备自学能力,才让人工智能真真正正地走入现代人的视野,引起起人类的广泛关注。

    珍惜彼此的邂逅,就是对相遇最好的报答,公众号:“让往事随风而逝”

    7年前 0条评论
  • 高倩的头像
    高倩
    这个人很懒,什么都没有留下~
    评论

    1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。IBM公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。
    从1956年正式提出人工智能学科算起,50多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。如果希望做出一台能够思考的机器,那就必须知道什么是思考,更进一步讲就是什么是智慧。什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。
    当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,在以后的岁月中,无数科学家为这个目标努力着。如今人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,如今计算机似乎已经变得十分聪明了。例如,1997年5月,IBM公司研制的深蓝(DEEP BLUE)计算机战胜了国际象棋大师卡斯帕洛夫(KASPAROV)。大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。

    7年前 0条评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部