人工智能好不好?人工智能怎么开发?

天街刘旭 美股 47

回复

共16条回复 我来回复
  • 辛巴的头像
    辛巴
    这个人很懒,什么都没有留下~
    评论
    人工智能包括五大核心技术:
    1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
    2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
    3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。
    4.机器人技术:近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。
    5.生物识别技术:生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等进行个人身份鉴定,最初运用于司法鉴定。人工智能包括五大核心技术:
    1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
    2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
    3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。
    4.机器人技术:近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。
    5.生物识别技术:生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等进行个人身份鉴定,最初运用于司法鉴定。人工智能包括五大核心技术:
    1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
    2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
    3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。
    2年前 0条评论
  • 李红的头像
    李红
    这个人很懒,什么都没有留下~
    评论
    人工智能的就业前景还是很不错的,人工智能的发展现状处于成长期,国家发布相关政策促进人工智能的发展,一些省份也比较重视人工智能的发展,并提出了相应的规划。

    中国人工智能发展迅猛,中国政府也高度重视人工智能领域的发展。预计到2020年,中国人工智能产业规模将超过1500亿元,带动相关产业规模超过1万亿元。2017年全球新兴人工智能项目中,中国占据51%,数量上已经超越美国。但全球人工智能人才储备,中国却只有5%左右,人工智能的人才缺口超过500万。
    全球共有超过360所具有人工智能研究方向的高校,其中美国拥有近170所,中国仅30多所。虽然一些中国高校开设了相关课程,但总体上缺乏人工智能的基础教学能力,高校在独自培养具有动手能力的应用型人才上有所欠缺。
    过去一年中,人工智能的人才需求增长近3倍,并且40%拥有AI技能的人才现阶段薪酬区间主要集中于10001元至15000元/月,远高于全国平均水平。
    从以上信息可以判断,人工智能的周期发展还是很长的,而目前很多大学把人工智能的核心的内容在研究生阶段培养,本科阶段用来测验学生是否有学习的潜力和能力。同时人工智能专业对教学设备和教学师资有过高的要求,而人工智能行业但凡有独特认知和能力的人才基本上在大型企业,没有在学校。这也是我们考生和家长务必考虑清楚的事情。

    2年前 0条评论
  • 张倩的头像
    张倩
    这个人很懒,什么都没有留下~
    评论
    人工智能现在已经得到了国家的大力支持,在人工智能行业因为有着强大的计算能力以及深度学习模型的建立等因素下,让人工智能算法的领域实现了重大的突破,而人工智能发展前景是分析深度学习应用的可用数据,来提高机器的更智能化,从中获得更多能够用之于民的服务,加大改善人们的生活,改变人们对人工智能以及世界的认知。
    现在的人工智能可以说在社会中已经得到了广泛的应用,不仅是生活,企业对人工智能的人才需求也在不断的持续增高,所以现在人工智能教育是非常好的选择。就像是计算机互联网火热的时候,只要是第一批投身人工智能的行业中,大多都会收获属于自己的那一份蛋糕,只要抓住机遇就不要再害怕了,只要你去努力了,就不会让自己后悔加入这个行业中。
    目前国家是大力支持发展人工智能的,相信在未来数十年后,相信能够见证到人工智能融入到更多的产业之中,现在的人工智能技术还不是那么的成熟,但是其中的一些人工智能技术已经在悄然改变了我们的生活,已经开始渗透到了我们日常生活之中,改善了我们生活的习惯。现在人工智能在不断的开发研究,让其能够更好的为人来带来更多的生活便利。在未来不久我们所能接触到的行业都会融入部分的人工智能技术,这也会让很多的人力工作会被人工智能所取代,让社会多出了更多的劳动力,让人们可以更好的进行创新。
    2年前 0条评论
  • 诗的头像
    这个人很懒,什么都没有留下~
    评论
    工智能计算机科支企图解智能实质并产种新能类智能相似式做反应智能机器该领域研究包括机器、语言识别、图像识别、自语言处理专家系统等。
    人工智能(Artificial_Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
    说起人工智能我们大家都很熟悉,各种人工智能概念,AI概念层不出穷,仔细想来无外乎智能音箱、智能打印机、智能售卖机等等诸如此类似乎没多少“智能”,和我们脑海中的“AI印象”,如:终结者、机器人、阿尔法狗、自动驾驶等技术大相径庭。
    目前,普遍认为人工智能的研究始于1956年达特茅斯会议,早期人工智能研究中,如何定义人工智能是个喋喋不休的问题,但基调始终是:像人一样决策、像人一样行动、理性的决策、理性的行动等研究方向。
    2年前 0条评论
  • 烁烁的头像
    烁烁
    这个人很懒,什么都没有留下~
    评论
    人工智能专业非常好就业。
    因为该专业是目前的热门专业,也是在社会经济,国计民生,应急救援,国防科技等领域应用十分广泛,前景十分广阔,生命力极其强大的专业。
    人工智能专业的热度非常高,也是新兴专业,但是对专业能力要求很高,未来是科技发展的时代,国家也在高度重视这个领域的发展,目前此领域专业人才稀缺,人工智能专业从长远来说就业前景是非常不错的。容都进行了简要的介绍,并提供了获取途径。
    2年前 0条评论
  • 王尊的头像
    王尊
    这个人很懒,什么都没有留下~
    评论
    工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
    人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
    人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
    自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
    优点:
    1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
    2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
    3、人工智能可以提高人类认识世界、适应世界的能力。
    缺点:
    1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
    2年前 0条评论
  • nanazhangdege的头像
    nanazhangdege
    这个人很懒,什么都没有留下~
    评论
    1、采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法,它已在一些领域内作出了成果,如文字识别,电脑下棋等。
    2、模拟法,它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。遗传算法和人工神经网络均属于模拟法。
    人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。
    2年前 0条评论
  • 李红的头像
    李红
    这个人很懒,什么都没有留下~
    评论

    人工智能专业是一个很不错的专业,前景很好,中国正在产业升级,工业机器人和人工智能方面会是强烈的热点,以后很多东西都是人工智能了。我是桂林电子科技大学18级学生,我有一个认识的学弟就是人工智能专业的,我们学校是2020年才有人工智能这个专业的,下面我来具体介绍一下这个专业吧。

    01——个人感受

    我认为人工智能是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能这个专业前景非常广阔,所以说这个专业是很好的选择。

    还有,我觉得这个专业适合所有对人工智能有兴趣的同学去选择,该专业的课程难度不是很高,不过也不能随便摆烂,也得认真去学。

    说到学习这个专业的首选那肯定是清华大学,其次是北京大学、国防科技大学、浙江大学和哈尔滨工业大学等。如果你真的对人工智能有着浓厚的兴趣,那么选择这个专业不会有错的。

    02——专业介绍

    人工智能是研究、开发用于模拟、延伸和扩展人工智能的理论、方法、技术及应用系统的一门新技术科学,也是计算机科学的一个分支。它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。

    03——主修课程

    人工智能专业的核心课程有:专业导论、人工智能数学基础、线性代数 A、概率论与数理统计、程序设计与问题求解、电路与电子技术基础、面向对象编程、算法及数据结构、人工智能基础、数据科学导论、计算机组成原理、机器学习、信息论、机器人学概论、数字信号处理、模式识别、自然语言处理、现代控制理论等。

    我们在学习中需要注意的是:要认真学习智能的基础理论、基本方法和基本技能,掌握相关应用领域基础知识。还需要具有系统的计算思维和数据思维,具有创新创业意识和国际视野,具有良好的社会人文素养、职业道德和团队精神。

    04——就业前景

    人工智能专业就业方向主要包括科研机构(机器人研究所等)、软硬件开发人员、高校讲师等。在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点。人工智能目前是一个快速增长的领域,人才需求量大,相比于其他技术岗位,竞争度偏低,薪资相对较高,因此,趁着这个机遇,人工智能专业是一个很好的选择。

    05——小结

    人工智能专业相当的不错,未来必定是一个人工智能的世界,掌握了人工智能技术,就是一笔不可描述的财富。人工智能不仅能带动国家的发展,还能够方便世界上所有的人,所以,相信自己的感觉,对人工智能感兴趣的同学,来选择这个专业肯定没错的。

    2年前 0条评论
  • 张凯的头像
    张凯
    这个人很懒,什么都没有留下~
    评论
    1、促进生产力提升。促进生产力提升是推动人工智能技术发展的重要原动力之一,从目前人工智能产品在工业领域的应用情况来看,未来更多的智能体将逐渐走进产业领域,人工智能也将是产业领域发展的新动能。当然,人工智能落地到产业领域也需要搭建相应的应用场景,这个过程还是相对比较复杂的,相信在当前产业互联网发展的大潮下,人工智能的落地应用会进一步提速。

    2、降低岗位工作难度。人工智能对于职场人最为积极的一个影响就是会降低岗位工作难度,降低岗位工作难度的同时,也必然会提升岗位工作效率。实际上,人工智能技术的运用,不仅会降低职场人的岗位工作难度,还会进一步拓展职场人的能力边界,使得职场人在借助于人工智能技术的情况下,成为一名“全面手”。

    3、加速创新。人工智能技术的运用会进一步促进创新,这在当前产业结构升级的大背景下,具有非常实际的意义。创新是企业发展的原动力,也是企业实现绿色发展和可持续发展的重要基础。人工智能加速创新可以体现在多个方面,比如对于资源的有效管理就是比较常见的途径。

    4、人工智能就是通过机器进行深度学习来工作,而这种学习过程,就是大量地识别和记忆已有的知识积累。创造性思维的来源之一是好奇心和想象力。爱因斯坦说过两句话:“我没有特殊的天赋,我只是极度好奇”、“想象力比知识更重要”。人接受的教育越多,知识积累得越多,好奇心和想象力可能相应减少,所以创造力并非随着受教育时间的增加而增加。创造性思维不仅取决于好奇心和想象力,还与价值取向有关,所以当我们讨论创新人才教育时,它不仅是一个知识和能力的问题,也是一个价值观的问题。

    3年前 0条评论
  • 有有的头像
    有有
    这个人很懒,什么都没有留下~
    评论
    2022年2月,美国海军学会学报刊发了《人工智能:太脆弱而无法战斗?》(Artificial Intelligence: Too Fragile to Fight?)。文章认为,人们对于人工智能的技术优势往往过于乐观,美国一部分领导人甚至担忧不采用人工智能就会有失去军事技术竞争优势的风险。
    虽然人工智能在一定条件下可以很好地支持作战人员或美国国防部的现有工作,但是人工智能仍具有持久的、关键的漏洞,如果国防应用程序要保持弹性和有效性,就必须彻底了解和充分解决这些漏洞,否则在关键作战能力中采用人工智能就会在核心要害部位招致灾难性的弱点。
    1.应用现状
    人工智能当前在美国海军中的应用现状
    1.1 美国海军的首要任务:发展AI!
    人工智能已经成为提高美国海军和美国国防部能力的技术焦点。美国海军部长卡洛斯•德尔•托罗(CarlosDel Toro)将人工智能列为革新美国海军力量的首要课题。美国海军作战部长迈克尔•吉尔戴(Michael Gilday)上将也提出:人工智能在战场能力和决策灵活性方面提供了许多有希望的突破。
    1.2 人工智能漏洞:降低其系统的作战预期
    AI技术的进步也伴随着巨大的风险:由于自动化(包括人工智能)具有持久的、关键的漏洞,若要应用与国防应用中,则必须彻底了解和充分解决这些漏洞,才能保持其有效性和弹性。然而,目前的人工智能系统非常脆弱——也就是说,在高强度的使用中,很容易被欺骗、损坏或容易出错。
    机器学习,尤其是现代“深度学习”方法,虽然推动了人工智能的进步,但也非常容易受到欺骗和干扰。人们通常认为“人-机团队”可以解决这个问题,但是这种团队本身也存在大量问题且十分脆弱。因此,新的AI功能系统只是看起来比原有技术优越,但是其潜在的脆弱性将为作战埋下灾难性缺陷与隐患。
    此外,未来应用程序中的故障模式通常是不可见的。因此,人工智技术虽然取得了重大进步,但往往没有充分认识到这些进步的局限性。导致了一种很危险的现象:冒着过度依赖技术的风险,而技术可能会大大低于预期。
    1.3 美国海军领导对人工智能/人-机团队协作盲目乐观
    陆军未来司令部司令和国防部技术采纳部领导迈克•默里(MikeMurray)上将在最近的一次电台采访中说:“我无法想象一个自动的目标识别系统不会比人类的记忆做得更好……假设你必须在训练抽认卡上有90%的成功率才有资格坐到炮手的位置上,那么根据你所看到的火炮类型,如果有正确的训练数据和正确的训练,我无法想象没有一个系统(一个算法)能够做得比90%更好,然后让人类决定是否正确、是否扣动扳机。”
    这种说法反映出,人们对人工智能的局限性以及人类与自动化之间的协调困难缺乏想象。
    AI识别的成功率只是建立在有限范围内实验所获得的数据基础之上的,现实世界中并没有一个成功的案列可以证明AI的可靠性。尤其是过去几十年,自动化在大型关键领域系统(如航空、制造和工业控制系统)中的应用存在诸多缺陷和漏洞。因此,AI在现实世界中的应用要吸取这些经验教训,而且要慎之又慎,只有在充分了解AI系统自身存在的局限性,才能更行之有效地应用AI系统。
    目前关于人工智能的说法往往过于乐观。过分夸大了技术期望,人工智能并不是万能药。相反,人工智能是一套重塑问题及其解决方案的技术。人工智能在军事或国家安全问题上的可靠应用必须确定要克服的关键问题与限制因素,军方不能忽视基本的技术现实,就急于开发新技术。否则,军方可能会发现自己依赖于脆弱的工具,无法胜任实际的作战任务。
    1.4 应用AI前应明其缺陷
    在军事行动中,必须根据“采用新技术是否会产生未知问题,以及是否会产生比它所要解决的问题更危险的问题”这个标准来仔细评估新技术。对于大型、复杂和“棘手”的问题,“任何解决方案总比没有好”这种方式并不总是经常能行得通。相反,干预往往会产生新的问题。

    2.优缺点对比
    人类与人工智能目标识别的优缺点对比
    2.1 人类识别的优势
    人类识别和目标识别算法既不等效也不直接可比。二者以不同的方式执行不同的任务,并且必须根据不同的标准来衡量。
    人类在目标识别任务中,不仅能识别目标本身,同时还能很好地识别与目标相关的周围环境。人类可以在理解目标识别这一概念的基础上,从总体上概括出目标本身及其所处环境的观察结果,并能大致评估出不确定因素,从而能更加清晰地了解所识别的目标。
    因此,人类的视觉和辨别能力远比简单的目标识别抽认卡测试所能测量的要强大得多。

    2.2 人工智能的目标识别
    相比之下,人工智能系统的目标识别是空白的。基于视觉的自动分类系统远无法达到“识别”的程度,而只是简单地解释和重复已知的模式。这种系统不能理解选择目标的原因,也不能概括出它们编制程序要处理的具体模式。而只是通过编程、或是从数据分析中提取的结论。 如果遇到从未遇到的新场景,很可能就没有任何已知的模式适用,人工智能系统提供的则是毫无知识、毫无根据的指导。
    2.3在复杂多变的现实世界中,AI很难描述扩展任务的目标识别性能
    在环境变化、设备退化或蓄意逃避和欺骗的现实世界中, 单独的图像识别不能对除了目标本身以外的周围环境进行描 述 。 人类在处理图像失真(比如,相机镜头上的灰尘或雨水、视频信号中的电子噪声、不可靠通信图像中的丢失部分)方面要更胜一筹。在特定图像失真上训练的模型可以接近或超过人类在特定图像失真上 的性能, 但 AI 的这种改进只是针对训练模型有较好的表现,在识别其它非训练模型中的图像失真方面性能不佳。
    2.4 人类识别与目标识别算法不具有可比性
    尽管图像识别模型可以在简单的抽认卡测试中“优于”人类这一说法可能是真的,但是使用实验室数据或是在作战测试场景中,人类和算法在目标选择和识别方面的性能是等同的,正如默里将军所说,这意味着在这些任务上的性能是具有可比性的。然而这一结论不可尽信!因为每一种情况下所做的工作是不一样的,所以生成结果的可靠性也会有很大的不同,依赖原始性能可能会导致危险的情况。
    图:2021年12月,波音公司的MQ-25型无人飞机在美国海军“乔治•H•W•布什”号航空母舰(CVN-77)的飞行甲板上正在接受指挥
    3.缺陷
    效果链有效性
    人工智能在应用中的缺陷
    3.1 对抗中被欺骗
    目前表现最好的人工智能方法是基于深度神经网络机器学习,在简单的抽认卡资格测试中,人工智能的性能似乎超过了人类。然而,这种性能的代价很高:这些模型会过度学习评估标准的细节,而不是适用于超越测试用例以外的一般规则。
    一个特别值得注意的例子是“对抗性例子”的问题,即由对手设计的尽可能混淆技术的情 况。 一些研究人员指出, AI 的主要显著特征之一就是 AI 在对抗中易被对方采用的混淆技术欺骗。 为了提高人工智 能的有效性,军方必须意识到欺骗可能导致不当行为的程度,并建立相应的理论和周围系统,以便人工智能支持的决策即使在敌人试图影响他们时也能保持稳健。
    3.2 决策错误
    人们可能会认为,让人类参与到AI系统的决策过程中就可以解决AI本身的漏洞。也就是说,AI系统向人类推荐决策建议,或者AI系统在人类严格监督下进行决策,这样人类就可以控制AI系统决策结果。
    不幸的是,人-机团队也经常被证明是脆弱的。因为人们对于自动化的状态是否可信,以及自动化建议采取的行动是否适当会感到不确定。
    1988年7月,美国“文森斯”号(CG-49)号意外击落了一架从阿巴斯班达尔国际机场起飞的伊朗民航客机,原因是该舰的宙斯盾系统曾为这架民航客机分配过一个跟踪标识符,但是这个跟踪标识符后来又分配给一架对方战斗机,AI系统根据这个跟踪标识符将迎面驶来的飞机描述为对方战斗机,人类操作员根据这一描述也认为这是对方战斗机,因此决定下令向这架飞机开火。尽管自动化水平已经有所提高,但如今人-机团队的脆弱性已经导致了最近几起高度自动化汽车(比如特斯拉)的撞毁事故、2017年美国海军“约翰•S•麦凯恩”号驱逐舰(DDG-56)海上相撞事故,以及2009年法航447航班在大西洋上空失事事故。
    这凸显了人与机器之间的模式混淆问题,尤其是当信息在复杂系统中传递或呈现出糟糕的人为因素时,这种问题可能会加剧。另一个相关的问题是自动化的依赖,人类无法找出与机器解决方案相矛盾的信息。评估人-机团队在这两种情况下中的性能是至关重要的——无论目标是提高平均性能还是在特定困难情况下的性能。
    3.3 判断被质疑
    有人可能会争论说,高整体性能或特定应用程序的操作认证可以消除这些担忧。但这也是一种过于简化的观点。再次想象一下默里将军提出的目标场景:假设系统有98%的准确率,但训练有素的人在相同的测试场景中只有88%的准确率。对于战场上真正的作战人员来说,当子弹和导弹飞来飞去,命悬一线时,作战人员是会质疑系统的判断,还是会直接扣动扳机?在危险紧急的情况下,作战人员会因为AI系统的优势而选择相信AI系统具有更好的性能吗?
    图:一名作战专家在美国海军“约翰•S•麦凯恩”号驱逐舰(DDG-56)上的作战信息中心监测水面联系
    4.军事应用悖论
    效果链有效性
    自动化军事应用上的悖论
    4.1 过度依赖人工智能将会使人类作战人员遭受“技能退化”
    随着任务的自动化并远离日常实践,人类作战人员将遭受所谓的“技能退化”。因此,默里将军假想的坦克系统作战人员,虽然他们能“发现”系统的错误,但是他们并没有被授权这样做,他们被要求必须在系统的帮助下执行任务。例如,这就像普通人使用智能手机中的全球定位系统进行导航一样,在使用全球定位系统以前,普通人自己寻路的技能本是家常便饭,但是全球定位系统进行导航后,普通人自己寻路的能力越来越差。这种过度依赖AI系统的现象同样也会影响到飞行员、舰桥观察团队等作战人员的专业技能。
    4.2 人-机团队的影响力
    尽管人-机团队很脆弱,但是只要每个部分都分配了正确的功能,并提供足够的支持,可以大大超越人类或机器。以“半电子化国际象棋”为例,人类棋手在选择走法时使用计算机辅助决策,即使很弱的棋手在没有帮助的情况下也能达到一个超越世界顶级象棋大师和世界顶级电脑象棋程序的水平。因此,人机一体化和关注与自动化相关的流程可能远比人类技能或智力更有影响力。
    4.3 人工智能在军事上“不可独立”!
    军方绝不能将人工智能应用作为“独立人工智能”。相反,人工智能只能是人类智力和组织能力的延伸。人工智能不是一个独立的代理,而是一个更为强大的工具,其应用于现有作战任务的特定方面。
    5.多传感器应用
    效果链有效性
    多传感器被寄希望用于解决人工智能的漏洞
    5.1 多传感器感知提升AI能力
    如果单独一个系统是脆弱的,那么一个融合多种传感器的系统性能会更好吗?
    多传感器数据输入就是指对基于视觉传感器的系统进行逻辑拓展(比如增加电磁频谱、音频、态势感知等传感器系统),从而可以增强AI系统可靠地发现、定位、跟踪和瞄准的能力,美国海军目前正在通过“红龙”演习来评估这种方法的有效性。利用不同领域的传感器收集不同方面的信息,就像人类利用多个感官获取周围信息一样。当一个人听到的(听觉传感器)与看到的(视觉传感器)不一样时,就会引起这个人的怀疑和重新审查,从而就有可能发现潜在发生的欺骗行为。同理,基于多传感器感知的AI系统也可以通过这种方式发现可能存在的欺骗行为。
    5.2 最佳权衡仍需探索
    然而,这种方法是否提高了对抗人工智能系统敌对控制的鲁棒性,仍是一个悬而未决的问题。每个传感器的数据输入到一个自动化工具中仍然受相同的对抗技术影响。采用多传感器会增加AI系统的复杂性,而这种复杂性则需要在以下两方面做出一种权衡。
    一方面,多传感器使对手在欺骗系统方面的挑战变得复杂。另一方面,在一个模型中增加输入元素的数量和特征的复杂性也会导致在数学上不可避免地增加敌对控制的可能性(因为可能的欺骗方法的数量比有效输入的数量增加得更快)。需要更多的研究来找到最佳的权衡。然而,向多领域感知的转变当然不能排除欺骗或任何特定途径的可能性。

    6.需注意的原则
    效果链有效性
    美国海军继续推进人工智能应用需要考虑的原则
    尽管有上述讨论,但不可否认的是,美国海军和更广泛的美国国防部应用迫切需要推进人工智能。然而,作战人员必须睁大眼睛,他们必须在何时、何地以及如何使用这些技术方面极其审慎。为了支持这种谨慎,他们应该考虑以下3个原则,以便在美国国防部应用中明智地和负责任地部署人工智能系统:
    实际应用AI系统需要强有力的证据表明其有效性。 因为如果缺乏强有力的证据,人们就会怀疑这些系统的优势是否和报道的一样好。AI系统有可能在特定的训练数据集、环境、测试条件和假设下表现出较好的性能,但是当这些条件都发生变化时,所获得的实验结果有可能会有很大不同,所以很难将有限条件下的实验结果实际地转化为满足作战需求的现实应用。
    部署人工智能系统必须具备足够的技术和社会技术安全网。克服环境和敌方的干扰是困难的、尚未解决的问题。因为人工智能是基于模式(编程或从数据中提取)进行作战的,所以当这些模式不成立时,其作战能力就会受到内在限制。
    人-机团队必须作为一个系统整体进行测试。 人类和机器擅长处理不同部分。分配功能和组合这些能力不仅不简单,而且常常违反直觉。需要对整个系统进行仔细评估,以支持任何关于应用程序的可信度或适用性的主张。
    目前,人工智能最有效的应用场景是:解决范围有限的、清晰仔细定义的问题,并确实可以很好地支持作战人员或美国国防部的现有工作。美国领导人也警告说,在当今世界如果美国不采用最新技术,那么美国就会有失去军事技术竞争优势的风险,而眼下的当务之急是: 美国海军领导人必须要彻底了解和充分解决AI系统中的漏洞,这样在关键作战能力中应用AI系统,就不会在核心要害部位招致灾难性的弱点。
    免责声明:本文转自学术plus,原作者宸熙。文章内容系原作者个人观点,本公众号编译/转载仅为分享、传达不同观点,如有任何异议,欢迎联系我们!
    转自丨学术plus
    作者丨宸熙
    编辑丨郑实

    研究所简介
    国际技术经济研究所(IITE)成立于1985年11月,是隶属于国务院发展研究中心的非营利性研究机构,主要职能是研究我国经济、科技社会发展中的重大政策性、战略性、前瞻性问题,跟踪和分析世界科技、经济发展态势,为中央和有关部委提供决策咨询服务。“全球技术地图”为国际技术经济研究所官方微信账号,致力于向公众传递前沿技术资讯和科技创新洞见。

    地址:北京市海淀区小南庄20号楼A座
    电话:010-82635522
    微信:iite_er

    3年前 0条评论
  • 郑继贤的头像
    郑继贤
    这个人很懒,什么都没有留下~
    评论
    近年来我国人工智能产业呈现出了蓬勃发展的良好态势。一是部分关键应用技术特别是图像识别、语音识别等技术,处于全球相对领先的水平,人工智能论文总量和高倍引用的论文数量,也处在第一梯队,据全球相对前列。二是产业整体实力显著增强。全国人工智能产业超过一千家,覆盖技术平台、产品应用等多环节,已经形成了比较完备的产业链。京津冀、长三角、珠三角等地区的人工智能产业急剧发展的格局已经初步形成。三是与行业融合应用不断深入。人工智能凭借其强大的赋能性,正在成为促进传统行业转型升级的重要驱动力量,各领域智能的新技术、新模式、新业态不断涌现,辐射溢出的效应也在持续增强,人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。但也要看到,在快速发展过程当中,我国人工智能的基础技术,还有较大欠缺,能够真正创造商业价值的还比较少。传统行业与人工智能的融合还存在较高门槛,有数据显示,今年人工智能领域投融资比前两年特别是跟去年相比,也有比较大幅度的下调。
    中国人工智能应用具有领域广、渗透深的特点,在产业化方面具有独特优势,但也面临巨大挑战,尤其是在基础理论和算法方面,原始创新能力不足,在高端芯片、关键部件等方面基础薄弱,高水平人才也不足。随着全球人工智能加速发展,各国在认知智能、机器学习、智能芯片等方面将不断取得突破。
    3年前 0条评论
  • 胡行娟的头像
    胡行娟
    这个人很懒,什么都没有留下~
    评论

    人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。

    本文核心数据:中国企业AI应用实施中遇到的阻碍情况TOP 5,人工智能各技术方向岗位人才供需比,开设“人工智能”本科专业学校数量,全国首批建设“人工智能”(080717T)本科新专业高校名单,中国龙头企业与高校合作或共建人工智能学院汇总

    1、 AI专业人才成为企业应用实施中最主要的问题

    专业人才为企业探索AI应用中遇到的主要障碍。从对于中国企业的调查来看,企业认为推进人工智能的探索应用中遇到的最主要的障碍是AI专业人才的缺乏,占比高达51.2%,其次是高质量的数据资源,占比达到48.8%。

    同时,根据工信部发布的数据显示,人工智能不同技术方向岗位的人才供需比均低于0.4,说明该技术方向的人才供应严重不足。从细分行业来看,智能语音和计算机视觉的岗位人才供需比分别为0.08、0.09,相关人才极度稀缺。

    岗位人才供需比=意向进入岗位的人才数量/岗位数量。

    2、 国家开始重视人工智能人才培养

    近年来我国人工智能学科和专业加快推进,多层次人工智能人才培养体系逐渐形成。2018年4月,教育部发布的《高等学校人工智能创新行动计划》提出,到2020年建立50家人工智能学院、研究院或交叉研究中心。

    2019年,新增人工智能专业的高校达到了180所,也是2019年度新增备案专业数量较多的学科。2020年,包括清华大学、北京语言大学、华北电力大学等在内的130所高校增设人工智能专业。

    2019年,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,全国共有35所高校获首批建设“人工智能”本科专业资格。

    除了增加人工智能专业的学校数量外,中国人工智能的龙头公司也开始与高校合作共建人工智能学院。我国人工智能领域的龙头企业也纷纷与顶尖高校(独立或联合)联合成立了人工智能学院或重点实验室,旨在培养未来人工智能人才。其中,科大讯飞与西南政法大学、重庆邮电大学、南宁学院等大学展开合作;腾讯则与深圳大学、辽宁工程技术大学等院校展开合作。

    以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》。

    3年前 0条评论
  • 兔宝宝的头像
    兔宝宝
    这个人很懒,什么都没有留下~
    评论
    工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法,它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法,它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。
    3年前 0条评论
  • 小白杨的头像
    小白杨
    这个人很懒,什么都没有留下~
    评论
    人工智能是未来的发展方向,是科技进步的具体表现,是社会发展的必然趋势。人工智能能够给我们在日常工作和日常生活中带来很多方便,能够提高我们的工作效率,所以说人工智能是很好的。
    3年前 0条评论
  • 甜甜的头像
    甜甜
    这个人很懒,什么都没有留下~
    评论
    一个普通聊天机器人需要大量语言训练。有两种做法,(对于中文)传统的是对一段文字进行分词,然后进行主谓宾分析,接着通过数据库中有的句型模式进行匹配,取得匹配高的几个,查找对应回答句型并根据原有文本联想填词。现代一般通过大规模语料训练,现成一个大的概率表,再得到回答映射概率表,最后自动完成聊天。对于小黄鸡之类的程序,是根据传统ALICE程序对句式学习的产物。流程:语料---分词(中科院ICTCLAS库)---语法分析/概率分析(聚类,N-gram)---句型模式匹配(模板匹配)/隐马可夫链,神经网络---概率分析(N-gram)/句型选用---句子生成
    3年前 0条评论
  • 辛巴的头像
    辛巴
    这个人很懒,什么都没有留下~
    评论
    人工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(Engineering

    approach),它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法(Modeling

    approach),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。本书介绍的遗传算法(Generic

    Algorithm,简称GA)和人工神经网络(Artificial Neural

    Network,简称ANN)均属后一类型。遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。为了得到相同智能效果,两种方式通常都可使用。采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。但一旦入了门,就可得到广泛应用。由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。

    7年前 0条评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部