人工智能如何入门知乎?人工智能怎么制作?
-
QQ人工智能机器人制作方法如下:
工具:iphone13、ios15.1.1、QQ8.9.25.627。
1、打开群聊,点击右上三横图标。
2、点击群机器人。
3、点击需要的人工智能机器人后面的添加按钮即可。
人工智能的应用
1、在家居方面,有能够帮人们清理垃圾的扫地机器人。
2、在教育方面,人工智能能帮助自动判卷和搜题识别。
3、在医学上,帮助医生快速诊断。
4、在交通上,无人驾驶技术诞生了。
5、在与外国人的沟通交流方面,翻译机能自动识别并生成外语。
6、商业零售方面,商品识别技术帮助卖方销售更多产品。
2年前 -
人工智能包括五大核心技术:
1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。
4.机器人技术:近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。
5.生物识别技术:生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等进行个人身份鉴定,最初运用于司法鉴定。人工智能包括五大核心技术:
1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。
4.机器人技术:近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。
5.生物识别技术:生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等进行个人身份鉴定,最初运用于司法鉴定。人工智能包括五大核心技术:
1.计算机视觉:计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。2年前 -
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。2年前 -
人工智能(AI)取代阁下工作好像是明日发生就要发生的事。曾任职微软(Microsoft)和Google 的李开复说很多职位将被取代,牛津大学说10 年后近半美国职位将处于高度自动化(即人类无得捞);尽管不少人学者认为AI 消灭工作但同时创造新工种。不如简单点:看看有那些工作会因为人工智能发展而吃香。
研究构构Tech Pro 引述求职网站Indeed 数据,列出6 大待遇优渥的AI 工种,包括:机器学习(Machine Learning)工程师、数据科学家、研究科学家、科研专家、商业智能(BI)开发员、电脑视觉工程师,以上职位平均年薪逾136,000 美元)。心动吧?很明显,以上只是反映美国数据(惟香港情况应相差不远),求职者亦需要先经学术训练才能胜任AI 工作。
人工智能类工种需要的技能当然包括编程,C / C++、Java、Python 等编程语言背景是基本,因这跟机器学习有关,有自然语言处理(NLP)技术等经验更佳。还有不要忘记:数学。AI 正正涵盖高等数学及资讯科技知识,如:线性代数、矩阵、凸优化(Convex Optimization)、概率论。未掌握以上基础,逻辑能力和分析能力便无从建立,遑论以AI 研发为职业。
除了科学技术,要做成功的「AI 从业员」,最好也学习商业知识,如把机器学习模型结果转化为企业或消费者可用的系统;多参加交流会议、阅读近期科学出版物,对吸收新知识应付日益复杂的环境也很重要。
Gartner 早前发表报告预计,人工智能将消灭180 万职位,但到2020 年又会在新兴领域创造230 万个工作岗位;Capgemini 调查又指,83% 受访公司表示因打算或正采用AI 技术而需开新职位。因此,机会总是有的,但如何令它属于你,便要懂得如何装备自己。
3年前 -
工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法,它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法,它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。3年前
-
一个普通聊天机器人需要大量语言训练。有两种做法,(对于中文)传统的是对一段文字进行分词,然后进行主谓宾分析,接着通过数据库中有的句型模式进行匹配,取得匹配高的几个,查找对应回答句型并根据原有文本联想填词。现代一般通过大规模语料训练,现成一个大的概率表,再得到回答映射概率表,最后自动完成聊天。对于小黄鸡之类的程序,是根据传统ALICE程序对句式学习的产物。流程:语料---分词(中科院ICTCLAS库)---语法分析/概率分析(聚类,N-gram)---句型模式匹配(模板匹配)/隐马可夫链,神经网络---概率分析(N-gram)/句型选用---句子生成3年前
-
从事人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
如果你感兴趣,可以去尝试,网站域名用top。5年前 -
人工智能的入门学习需要具备以下知识结构:
第一:编程语言。编程语言是学习人工智能的基础内容之一,掌握了编程语言才能完成一系列具体的实验。推荐学习Python语言,一方面原因是Python语言简单易学,实验环境也易于搭建,另一方面原因是Python语言有丰富的库支持。目前Python语言在人工智能领域有广泛的应用,包括机器学习、自然语言处理和计算机视觉等方向。
第二:算法设计基础。目前人工智能的研究内容集中在六个大的方向上,分别是自然语言处理、知识表示、自动推理、机器学习、计算机视觉和机器人学,这些内容都有一个重要的基础就是算法设计,可以说算法设计是研究人工智能的关键所在。学习算法设计可以从基础算法开始,包括递归、概率分析和随机算法、堆排序、快速排序、线性时间排序、二叉树搜索、图算法等内容。
第三:人工智能基础。人工智能基础内容的学习是打开人工智能大门的钥匙,人工智能基础内容包括人工智能发展史、智能体、问题求解、推理与规划、不确定知识与推理、机器学习、感知与行动等几个大的组成部分。
在完成以上内容的学习之后,最好能参加一个人工智能的项目组(课题组),在具体的实践中完成进一步的学习过程。
6年前 -
这两年人工智能发展很快,从之前的谷歌AlphaGo机器人战胜世界围棋冠军,到百度无人车,京东和亚马逊的无人仓库分拨中心,还有很多人工智能的相关应用,可见人工智能的前景一片大好,于是就有很多人想要去进行人工智能学习。人工智能学习路线推荐给你:
阶段一是Python语言(用时5周,包括基础语法、面向对象、高级课程、经典课程);阶段二是Linux初级(用时1周,包括Linux系统基本指令、常用服务安装);阶段三是Web开发之Diango(5周+2周前端+3周diango);阶段四是Web开发之Flask(用时2周);
阶段五是Web框架之Tornado(用时1周);阶段六是docker容器及服务发现(用时2周);阶段七是爬虫(用时2周);阶段八是数据挖掘和人工智能(用时3周)。
在这里,小编还想给大家推荐一本人工智能学习必备书籍:《人工智能基础教程(第2版)》系统地阐述了人工智能的基本原理、实现技术及其应用,全面地反映了国内外人工智能研究领域的最新进展和发展方向。
《人工智能基础教程(第2版)》共18章,分为4个部分,第1部分是搜索与问题求解,系统地叙述了人工智能中各种搜索方法求解的原理和方法;
第2部分为知识与推理,讨论各种知识表示和处理技术、各种典型的推理技术,还包括非经典逻辑推理技术和非协调逻辑推理技术;
第3部分为学习与发现,讨论传统的机器学习算法、神经网络学习算法、数据挖掘和知识发现技术;
第4部分为领域应用,这些内容能够使读者对人工智能的基本概念和人工智能系统的构造方法有一个比较清楚的认识,对人工智能研究领域里的最新成果有所了解。
《人工智能基础教程(第2版)》强调先进性、实用性和可读性,可作为计算机、信息处理、自动化和电信等it相关专业的高年级本科生和研究生学习人工智能的教材,也可供从事计算机科学研究、开发和应用的教学和科研人员参考。6年前 -
0基础的小伙伴建议先优先掌握好C++和python等语言,因为编程对于人工智能来说就是基础,基础不好更不谈造房子了,人工智能都有它系统的课程,可以去多找几本蔡自兴教授的书查看,或者去自兴学院参考下。6年前
-
想要学习人工智应该怎么入门:业余爱好的话,最好把算法与数据结构学好,这是基础,最好有良好的编程水平,多思考什么才是智能这个问题,对实际的一些问题或者经典的问题提出自己的解法,然后去实现,逐渐地就会找到自己对人工智能的理解。
一、有关人工智能的介绍:人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”,也可能超过人的智能。
二、研究价值:例如繁重的科学和工程计算本来是要人脑来承担的,如今计算机不但能完成这种计算,而且能够比人脑做得更快、更准确,因此当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”,可见复杂工作的定义是随着时代的发展和技术的进步而变化的,人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,另一方面又转向更有意义、更加困难的目标。
通常,“机器学习”的数学基础是“统计学”、“信息论”和“控制论”。还包括其他非数学学科。这类“机器学习”对“经验”的依赖性很强。计算机需要不断从解决一类问题的经验中获取知识,学习策略,在遇到类似的问题时,运用经验知识解决问题并积累新的经验,就像普通人一样。我们可以将这样的学习方式称之为“连续型学习”。但人类除了会从经验中学习之外,还会创造,即“跳跃型学习”。这在某些情形下被称为“灵感”或“顿悟”。一直以来,计算机最难学会的就是“顿悟”。或者再严格一些来说,计算机在学习和“实践”方面难以学会“不依赖于量变的质变”,很难从一种“质”直接到另一种“质”,或者从一个“概念”直接到另一个“概念”。正因为如此,这里的“实践”并非同人类一样的实践。人类的实践过程同时包括经验和创造。这是智能化研究者梦寐以求的东西。
7年前 -
人工智能入门需要掌握这些知识:
1.基础数学知识:线性代数、概率论、统计学、图论
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库
3.编程语言基础:C/C++、Python、Java
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容。
5.工具基础知识:opencv、matlab、caffe等
要进入人工智能行业,首先要有一定的数学功底,因为人工智能不同于app开发,网页开发、游戏开发等传统的互联网职位,先看看51cto学院人工智能的课程,会有不少帮助。人工智能是从数学中的“逼近理论”逐步演化而来的,当今人工智能所使用的方法,最开始的时候大部分是数学家为了逼近某些比较难表示的非线性函数而使用的。后来随着计算机性能的提高,计算机工作者,统计学家,开始尝试用这套“逼近理论”解决一些分类问题。逐步发展成为现在的人工智能局面。现在属于人工智能行业发展初期,各种可用的api函数都比较少,所以自己编写算法是必须要会的。
“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
7年前 -
业余爱好的话,最好把算法与数据结构学好,这是基础,最好有良好的编程水平,多思考什么才是智能这个问题,对实际的一些问题或者经典的问题提出自己的解法,然后去实现,逐渐地就会找到自己对人工智能的理解。。毕竟这只是一个概念,没有人知道它确切的实现方法11年前
-
人工智能是机械和控制的结合,如果你有计算机本科的背景的话,可以再学习一些机电方面的内容,人工智能比较高端,本科期间接触的还是不多的,入门可以看机电专业的本科课程,深入的话就要看研究生相关专业了。11年前
-
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式作出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的,现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确,因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展,一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。《Thinking in C#》(确实是好书),《Inside C#》,《C# reference》 懂得人工智能语言,如C++,Lisp 人工智能是相对于人类智能而言的。它是指用机械和电子装置来模拟和代替人类的某些智能。人工智能也称“机器智能”或“智能模拟”。当今人工智能主要是利用电子技术成果和仿生学方法,从大脑的结构方面模拟人脑的活动,即结构模拟。
人脑是智能活动的物质基础,是由上百亿个神经元组成的复杂系统。结构模拟是从单个神经元入手的,先用电子元件制成神经元模型,然后把神经元模型连接成神经网络(脑模型) ,以完成某种功能,模拟人的某些智能。如1957年美国康乃尔大学罗森布莱特等人设计的“感知机”;1975年日本的福岛设计的“认知机”(自组织多层神经网络) 。11年前
