人工智能能自学吗?末日人工智能在哪?
-
当然可以自学。人工智能作为新时代科学飞速发展的产物之一,他的出现极大的便利了人们的生活,提高了人们对生活的体验。作为新兴的产业之一,会有很多小伙伴对其产生浓厚的兴趣,那么今天就让我们来讲讲如何学习人工智能,顺便分享几个学习人工智能的网站以供大家参考。
首先,人工智能属于计算机的一个分支,他是科技发展的重要产物,同样也是科技强大的体现。如果决定想要学习人工智能,当然不论是学任何东西。第一步就是要先了解你所要学习的具体是什么东西。就拿人工智能来举例,我们要先了解这一领域以及一些相关的基础知识。
一、人工智能是什么?
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。当我们在了解了基础的知识后我们还要对其进行下一步定义,就是我们为什么要去学习这项专业也就是我们要拿他去干什么?也就是明确目的性。
人工智能
你的目的是什么?是想要做基础的学术研究、比较感兴趣简单的进行了解还是说当成一个具体的就业方向,然后想明白这个问题我们再去根据他来进行有重点地去学习这项专业。像人工智能他的方向可能会有很多例如:机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
选择相关的带着目的地去进行学习,这样是最有效率的。
好了,接下来由我来分享几个有关学习人工智能的网站
网站一:美国人工智能协会(网址: http://www.aaai.org/ )
美国人工智能协会官网
作为美国一个非盈利性的科学社团组织,主要致力于让机器产生智慧思考和智能行为的研究。此外,提升公众对人工智能的理解,对人工智能实践人员的教学和培训,为人工智能领域的研究者和投资者提供指导等也都是AAAI的实践内容。
网站二:智能代理家园(Agentland 网址: http://www.agentland.com/ )
智能代理家园(官网
智能代理是人工智能的应用领域之一,在中学人工智能课程教学中,适当介绍智能代理的基本概念和工作原理,并让学生与智能代理实例进行交互操作,能使其不但感受到智能代理的智慧和人性化服务,并且将由对智能代理的亲身体验,而产生对人工智能课程学习的浓厚兴趣。PS:可以当作入门学习的基础。
好了以上就是对人工智能的基本了解与自学方法,感兴趣的小伙伴可以去学习一下。
3年前 -
随着社会的发展,人工智能是未来大势所趋。我们也应该与时俱进不断地更新自己的知识。那我们该如何学习人工智能呢?因为人工智能在社会上并没有所谓的课程,我们可以向学习知识一样来自学人工智能。
机器学习
所谓的人工智能就是机器代替人类来做事情,比如说以前做蛋糕是人工打鸡蛋打发蛋白,耗时长和人力成本高,而现在我们只需要一个机器就可以代替我们做所有的事情,成本低,而且花费时间就短生产效率大大就提高了。这就需要,我们去学习如何操作机器去了解机器的每一个零件代表什么意思,看懂说明知道如何去控制机器。
深度学习
人工智能的出现,其实也是人类生产制造它的结果,而如何去生产制造他来达到我们想要的目的,这样就让我们去深度学习关于这个人工智能机器的知识,广泛应用知识来面对人工智能。因为人工智能是一个前所未有的东西,待开发的区域也还有很多,所以我们只能通过不断地学习来提高自己,从而提高我们的人工智能,这是一环扣一款环的缺一不可。
数据处理
人工智能的背后,其实是一堆数据。而不同的处理方式,会导致这些数据会有出入,我们要想具体达到人工智能去做某一种,目的就要对应的去做数据处理。而数据处理并不像我们打扫卫生扫地如此简单。他需要经过算术反复的试验来得出最终的数据,所以数据处理是非常严谨的,这也是我们学习人工智能的必要之一。
人工智能的学习建议从简单的开始,因为如果从最难的部分开始的话,这是一个我们未涉及过的领域。我们会有可能觉得非常的气馁甚至去放弃,所以就好像我们从一年级一直到我们大学逐步渐进。在过程中不断制定小目标,让自己慢慢地自学成才,慢慢地学懂人工智能。
3年前 -
1. 寻找一些免费的书籍。
Shival Gupta分享自己初学AI的经验时,强调了熟悉基本AI术语和方法的重要性。寻找一些免费的AI书籍作为自己学习人工智能的开始,是正确的做法。
Peter Norvig和Stuart J. Russell所著的《Artificial Intelligence: A Modern Approach》一书就很不错。本书不仅介绍了基本的人工智能概念和算法(专家系统、深度优先和广度优先搜索、知识表示等),而且还包括基础知识如贝叶斯推理,一阶逻辑,语言建模等。
对于那些对深度学习感兴趣的人, Ian Goodfellow、Yoshua Bengio和Aaron Courville 所写的《深度学习》(自适应计算和机器学习系列)一书是不错的选择。
此外,可以看看《Logic For Computer Science》这本免费书,它解释了计算机科学的数学逻辑,并强调了求解证明的算法方法。2.熟悉Python,(C / C ++)和数据结构。
人工智能从业者相信,任何主流语言和非主流语言都能应用于AI / ML。最大的区别在于库/工具的性能和可用性。
例如,C++的所有设置都优于Java或Python,并帮助开发人员最大化硬件的功能。另一方面,Python有一个非常好的FFI,并且经常与C或C++结合使用。与此同时,Octave / MATLAB、R、Python、C++、Java、R和其他一些语言都有高质量的库,如何使用取决于你想要做什么。
一般的共识是,必须熟悉一些流行的语言,如Python,它有一个很好的工具箱/库。
3年前 -
假设你是零基础,如果有基础的,可以略过自己已经掌握的部分技术。
1、务实基础,学习高数和Python编程语言。
因为人工智能里面会设计很多数据、算法的问题,而这些算法又是数学推导出来,所以你要理解算法,就需要先学习一部分高数知识。
先将高等数学基础知识学透,从基础的数据分析、线性代数及矩阵等等入门,只有基础有了,才会层层积累,不能没有逻辑性的看一块学一块。
再就是学习python编程语言,Python具有丰富和强大的库,作为人工智能学习的基础编程语言是非常适合的。
2、阶段晋升,开始学习机器学习算法+实践演练。
掌握以上基础以后,就要开始学习完机器学习的算法,并通过案例实践来加深理解和掌握。还有很多机器学习的小案例等着你来挑战,前面掌握的好,后面当然轻松很多,步入深度学习
3、不断挑战,接触深度学习。
深度学习需要机器大量的经过标注的数据来训练模型,所以你的掌握一些数据挖掘和数据分析的技能,然后你再用来训练模式。在这里你可能会有疑问,据说深度学习,好像有很多神经网络,看着好复杂,编辑这些神经网络那不是太难了,你大可放心,谷歌、亚马逊、微软等大公司已经把这些神经网络模型封装在他们各自的框架里面了,你只需要调用就可以了。
4、不断实战,曾倩自己的实力经验。
实战是检验真理的唯一标准。当你掌握了基本的技术理论,就要开始多实践,不断验证自己的理论,更新自己的技术。如果有条件的话,可以从一个项目的前期数据挖掘,到中间模型训练,并做出一个有意思的原型,能把一整套的流程跑通,那么恭喜你,你已经具备一名人工智能初级工程师的水准了。6年前 -
说实话,人工智能涉及到领域和课程太多,看了其他的回答,很专业,但我觉得对于你这样完全零基础的小白来说,其实并不适合,学习门槛还是很高的。6年前
-
人工智能是一个学科,只能学其中的专业或方向的某些知识、技术和方法,学习的程度和水平还需要认可(证件)。找工作还需要符合社会及企事业的具体需求,并非学点皮毛就可以就业的。6年前
