人工智能之父是谁?什么是人工智能的核心?

lovelysnowbird 美股 96

回复

共20条回复 我来回复
  • 卢京辉的头像
    卢京辉
    这个人很懒,什么都没有留下~
    评论

    麦卡锡

    约翰·麦卡锡是公认的“人工智能之父”,他在攻读博士期间首次尝试在机器上模拟人工智能,并于1956年首次提出“人工智能”的概念。后来为了发展人工智能,他创立了Lisp,因此也被誉为“Lisp语言之父”。

    LISP是什么

    LISP是一种通用高级计算机程序语言,长期以来垄断人工智能领域的应用。LISP作为应用人工智能而设计的语言,是第一个声明式系内函数式程序设计语言,有别于命令式系内过程式的C、Fortran和面向对象的Java、C#等结构化程序设计语言。

    LISP有以下几个主要特点

    1. 计算用的是符号表达式而不是数;

    2.具有表处理能力,即用链表形式表示所有的数据;

    3.控制结构基于函数的复合,以形成更复杂的函数;

    4.用递归作为描述问题和过程的方法;

    5.用LISP语言书写的EVAL函数既可作为LISP语言的解释程序,又可以作为语言本身的形式定义;

    6.程序本身也同所有其他数据一样用表结构形式表示。

    2年前 0条评论
  • 棉花糖的头像
    棉花糖
    这个人很懒,什么都没有留下~
    评论

    人工智能之父有四个人,他们分别是艾伦·麦席森·图灵、约翰.麦卡锡、马文·明斯基、西摩尔·帕普特。

    具体贡献:

    1、艾伦·麦席森·图灵。图灵奠定了人工智能的逻辑,并且提出了图灵测试,计算机在5分钟之内回答的问题中,超过百分之三十被认为是人类做出的解答,让人工智能初步得到人们的认可。

    2、约翰.麦卡锡。将批处理方式改进成了能够同时允许多人使用的分时方式。

    3、马文·明斯基。发明了能够模拟人类活动的机器人,也是最早的能够模拟人类的机器人。

    4、西摩尔·帕普特。将儿童和人工智能以非常有趣的方式结合在了一起,从这里开始,科技与教育开始融合,对后来的教育影响非常大。

    艾伦·麦席森·图灵(英语:Alan Mathison Turing,1912年6月23日-1954年6月7日),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。

    1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,第二次世界大战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。

    1954年6月7日,图灵吃下含有氰化物的苹果中毒身亡,享年41岁。2013年12月24日,在英国司法大臣克里斯·格雷灵的要求下,英国女王伊丽莎白二世向图灵颁发了皇家赦免。

    图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。

    2年前 0条评论
  • 小鱼儿的头像
    小鱼儿
    这个人很懒,什么都没有留下~
    评论
    1、随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。
    2、人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能相关领域的发展前景还是非常广阔的。
    3年前 0条评论
  • 李亚茹的头像
    李亚茹
    这个人很懒,什么都没有留下~
    评论
    人工智能的核心:

    1、计算机视觉

    计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉技术运用由图像处理操作及其他技术所组成的序列,来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理,分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

    计算机视觉有着广泛的应用,其中包括:医疗成像分析被用来提高疾病预测、诊断和治疗;人脸识别被Facebook 用来自动识别照片里的人物;在安防及监控领域被用来指认嫌疑人;在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多购买选择。

    机器视觉作为相关学科,泛指在工业自动化领域的视觉应用。在这些应用里,计算机在高度受限的工厂环境里识别诸如生产零件一类的物体,因此相对于寻求在非受限环境里操作的计算机视觉来说目标更为简单。计算机视觉是一个正在进行中的研究,而机器视觉则是“已经解决的问题”,是系统工程方面的课题而非研究层面的课题。因为应用范围的持续扩大,某些计算机视觉领域的初创公司自2011 年起已经吸引了数亿美元的风投资本

    、机器学习

    机器学习指的是计算机系统无须遵照显式的程序指令,而只依靠数据来提升自身性能的能力。其核心在于,机器学习是从数据中自动发现模式,模式一旦被发现便可用于预测。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息的数据库,系统就会学习到可用来预测信用卡欺诈的模式。处理的交易数据越多,预测就会越准确。

    机器学习的应用范围非常广泛,针对那些产生庞大数据的活动,它几乎拥有改进一切性能的潜力。除了欺诈甄别之外,这些活动还包括销售预测、库存管理、石油和天然气勘探,以及公共卫生等。机器学习技术在其他的认知技术领域也扮演着重要角色,比如计算机视觉,它能在海量图像中通过不断训练和改进视觉模型来提高其识别对象的能力。

    3年前 0条评论
  • 陈婉茹的头像
    陈婉茹
    这个人很懒,什么都没有留下~
    评论
    人工智能的核心:1、计算机视觉,是指计算机从图像中识别出物体、场景和活动的能力;2、机器学习,指的是计算机系统无须遵照显式的程序指令;3、自然语言处理;4、机器人;5、语音识别,主要是关注自动且准确地转录人类的语音技术。 本文操作环境:windows7系统、Dell G3电脑。
    3年前 0条评论
  • 郑继成的头像
    郑继成
    这个人很懒,什么都没有留下~
    评论

    算法是人工智能的核心原因如下:

    简而言之,因为算法就是人工智能的规则,人工智能依据数据得出来的指向结果都是通过算法的运行计算出来的。所以算法作为是人工智能的核心,其下的数据、应用等只是依附于算法。因此,在人工智能产业链金字塔结构中,塔尖是算法。

    人工智能的涵盖范畴:

    人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。

    可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。

    从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

    3年前 0条评论
  • 小白杨的头像
    小白杨
    这个人很懒,什么都没有留下~
    评论
    1.计算机视觉

    计算机视觉技术运用由图像处理操作及机器学习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。

    2.机器学习

    机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。

    3.自然语言处理

    对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。

    4.机器人技术

    近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。

    5.生物识别技术

    生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等进行个人身份鉴定,最初运用于司法鉴定。

    3年前 0条评论
  • 可爱宝宝的头像
    可爱宝宝
    这个人很懒,什么都没有留下~
    评论

    1、计算机视觉

    计算机视觉是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉技术运用由图像处理操作及其他技术所组成的序列,来将图像分析任务分解为便于管理的小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理,分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

    2、机器学习

    机器学习指的是计算机系统无须遵照显式的程序指令,而只依靠数据来提升自身性能的能力。其核心在于,机器学习是从数据中自动发现模式,模式一旦被发现便可用于预测。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息的数据库,系统就会学习到可用来预测信用卡欺诈的模式。处理的交易数据越多,预测就会越准确。

    3、机器人

    将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、制动器以及设计巧妙的硬件中,这就催生了新一代的 机器人,它有能力与人类一起工作,能在各种未知环境中灵活处理不同的任务。例如,无人机、可以在车间为人类分担工作的“cobots”等。

    4、语音识别

    语音识别主要是关注自动且准确地转录人类的语音技术。该技术必须面对一些与自然语言处理类似的问题,在不同口音的处理、背景噪声、区分同音异形/异义词(“buy”和“by”听起来是一样的)方面存在一些困难,同时还需要具有跟上正常语速的工作速度。

    3年前 0条评论
  • 洋洋妈的头像
    洋洋妈
    这个人很懒,什么都没有留下~
    评论

    1 计算机视觉。

    计算机视觉是指计算机能从图像中识别出物体、场景和活动的能力。

    它有着广泛的应用,包括了医疗的成像分析,用作疾病预测、诊断和治疗;人脸识别;安防和监控领域用来识别嫌疑人;在购物方面,消费者可以用智能手机拍摄产品以获得更多的购物选择。

    2 机器学习。

    机器学习是指计算机系统无须遵照显示的程序指令,而是依靠数据来提升自身性能的能力。

    它的应用也很广泛,主要针对产生庞大数据的活动,比如销售预测,库存管理,石油和天然气勘探,以及公告卫生等。

    3 自然语言处理。

    它是指计算机能够像人类一样拥有文本的处理能力。

    举例来说,就是在许多封电子邮件中,以机器学习为驱动的分类方法,来判别一封邮件是否属于垃圾邮件。

    4 机器人

    将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、制动器以及设计巧妙的硬件中,这就形成了机器人,它有能力跟人类一起工作。

    例如无人机,以及在车间为人类分担工作的“cobots”等。

    5 语音识别

    语音识别主要是关注自动且准确地转录人类的语音技术。

    语音识别的主要应用包括医疗听写、语音书写、电脑系统声控、电话客服等。最近推出了一个允许用户通过语音下单的移动APP。

    4年前 0条评论
  • lovelysnowbird的头像
    lovelysnowbird
    这个人很懒,什么都没有留下~
    评论
    人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

    一、机器学习

    机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。

    根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。

    根据学习方法可以将机器学习分为传统机器学习和深度学习。

    二、知识图谱

    知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。

    知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

    三、自然语言处理

    自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。

    机器翻译

    机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。

    语义理解

    语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。

    问答系统

    问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。

    自然语言处理面临四大挑战:

    一是在词法、句法、语义、语用和语音等不同层面存在不确定性;

    二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;

    三是数据资源的不充分使其难以覆盖复杂的语言现象;

    四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算

    四、人机交互

    人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

    五、计算机视觉

    计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

    目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:

    一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;

    二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;

    三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

    六、生物特征识别

    生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。

    识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。

    生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

    七、VR/AR

    虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。

    虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。

    目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势。

    4年前 0条评论
  • suansuanmao的头像
    suansuanmao
    这个人很懒,什么都没有留下~
    评论
    人工智能的核心一共有5个方面,它们分别是语音识别、计算机视觉、自然语言处理、机器学习、机器人。正是因为有了这些核心技术,才可以让人工智能更加产业化,当人工智能产业化了以后,就可以带来比较广泛的子产业。比如计算机视觉方面,可以运用在人脸识别。还可以运用在医学方面,可以进行有效的医疗成像。比如还有机器人这个核心技术,不仅可以实现无人机,还可以代替人类做一些工作。另外还有机器学习这项核心技术,应用这项技术可以有效的甄别那些诈骗的行为,还可以运用在公共卫生或者天然气的勘探方面等等。
    5年前 0条评论
  • nanazhangdege的头像
    nanazhangdege
    这个人很懒,什么都没有留下~
    评论
    现代电子计算机之父–巴贝奇
    1871年,年逾古稀的巴贝奇离开自己毕生为之努力奋斗却未竟的事业辞世,为后人留下了宝贵的遗产——几百张绘有几万个零件的图纸、30多种不同的计算机设计方案和一大堆工作笔记。作为计算机的发明人之—,谁也无法磨灭他的卓越贡献。
    1812年,巴贝奇首先设计出了差分机,随后开始了制造工作。在1822年制成了机器的一小部分。开机计算后,其工作的准确性达到了计划的要求。后来政府明确表示不可能再给予他资助了,差分机就这样中途夭折了。今天,我们在伦敦皇家学院博物院里,还能见到巴贝奇的设计图纸和未完成的差分机。
    1834年,巴贝奇在研制差分机的工作中,看到了制造一种新的、在性能上大大超过差分机的计算机的可能性。他把这个未来的机器称为分析机。巴贝奇的分析机由三部分构成。第一部分是保存数据的齿轮式寄存器,巴贝奇把它称为“堆栈”,它与差分机中的相类似,但运算不在寄存器内进行,而是由新的机构来实现。第二部分是对数据进行各种运算的装置,巴贝奇把它命名为“工场”。
    第三部分是对操作顺序进行控制,并对所要处理的数据及输出结果加以选择的装置。它相当于现代计算机的控制器。为了加快运算的速度,巴贝奇设计了先进的进位机构。他估计使用分析机完成一次50位数的加减只要1秒钟,相乘则要1分钟。计算时间约为第一台电子计算机的100倍。同时,在多年的研究制造实践中,巴贝奇写出了世界上第一部关于计算机程序的专著。
    尽管成功总是从巴贝奇的身边擦肩而过,但在计算机的发展史上,巴贝奇写下了光辉的一页。他的设计思想为现代电子计算机的结构设计奠定了基础。众所周知,现代电子计算机的中心结构部分恰好包括了巴贝奇提出的解析机的3个部分,可以这样说,巴贝奇的解析机是现代电子计算机的雏形。
    计算机之父──冯·诺依曼
    1903年12月28日,在布达佩斯诞生了一位神童,这不仅给这个家庭带来了巨大的喜悦,也值得整个计算机界去纪念。正是他,开创了现代计算机理论,其体系结构沿用至今,而且他早在40年代就已预见到计算机建模和仿真技术对当代计算机将产生的意义深远的影响。他,就是约翰·冯·诺依曼(JohnvonNewmann)。
    出生于犹太家庭的冯·诺依曼聪明绝顶,优秀的天资再加上良好的家庭教育,使他6岁时就已能心算8位除法,18岁时发表了论文,获得了化学工程学位。1931年时,他由于政治原因离开了欧洲来到普林斯顿大学任教,并成为该校著名的IAS研究院的最早的6位数学家之一。正是对数学研究的进一步深入,使他尝试利用电子设备进行科学运算。早在ENIAC产生之前,冯·诺依曼就对艾肯的MarkⅠ(ASCC)等电子计算设备有所研究。但他并没有局限于其中,而是有独创性的意识到计算机构建和并行等问题。1945年,他在关于EDVAC(与莫尔小组合作研制)的报告中首次把存储程序概念引入计算机领域,EDVAC也成为世界上首台能够运行、产生结果、具有存储程序的计算机
    现在使用的计算机,其基本工作原理是存储程序和程序控制,它是由世界著名数学家冯·诺依曼提出的。美籍匈牙利数学家冯·诺依曼被称为”计算机之父”。现在使用的计算机,其基本工作原理是存储程序和程序控制,它是由世界著名数学家冯·诺依曼提出的。
    另外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础——艾伦·图灵被视为计算机之父
    人工智能之父阿兰·图林
    5年前 0条评论
  • 小白杨的头像
    小白杨
    这个人很懒,什么都没有留下~
    评论

    计算机科学之父:艾伦·麦席森·图灵。计算机之父:冯·诺依曼。

    计算机科学之父:

    艾伦·麦席森·图灵是英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。1931年图灵进入剑桥大学国王学院,第二次世界大战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。艾伦·麦席森·图灵常被认为是现代计算机科学的创始人。

    计算机之父:

    计算机基本工作原理是存储程序和程序控制,它是由世界著名数学家冯·诺依曼提出的。美籍匈牙利数学家冯·诺依曼被称为“计算机之父”。

    人们把冯诺依曼的这个理论称为冯诺依曼体系结构。从ENIAC到当前最先进的计算机都采用的是冯诺依曼体系结构。

    扩展资料

    艾伦·麦席森·图灵主要成就:

    1、图灵指出,通用图灵机在计算时,其“机械性的复杂性”是有临界限度的,超过这一限度,就要靠增加程序的长度和存贮量来解决.这种思想开启了后来计算机科学中计算复杂性理论的先河。

    2、在判定问题上,图灵的另一成果是1939年提出的带有外部信息源的图灵机概念,并由此导出“图灵可归约”及相对递归的概念。运用归约和相对递归的概念,可对不可判定性与非递归性的程度加以比较。

    冯·诺依曼主要成就:

    1、冯诺依曼大胆的提出,抛弃十进制,采用二进制作为数字计算机的数制基础。同时,他还说预先编制计算程序,然后由计算机来按照人们事前制定的计算顺序来执行数值计算工作。

    2、1932年,冯·诺依曼发表了关于遍历理论的论文,解决了遍历定理的证明,并用算子理论加以表述,它是在统计力学中遍历假设的严格处理的整个研究领域中,获得的第一项精确的数学结果。

    参考资料

    百度百科-计算机之父

    百度百科-艾伦·麦席森·图灵

    5年前 0条评论
  • 安小丽的头像
    安小丽
    这个人很懒,什么都没有留下~
    评论

    1956年夏季,在美国新罕布什尔州的达特莫斯大学,正式以人工智能为名义的一次创造性聚会标志着人工智能的诞生。

    参加这次聚会的有当时的年轻数学助教、现斯坦福大学教授麦卡锡,以及他的三位朋友:哈佛大学年轻数学和神经学家、现麻省理工学院教授明斯基,IBM以及公司信息研究中心负责人洛切斯特和贝尔试验室信息部数学研究员香农,还有IBM公司的莫尔和塞缪尔,麻省理工学院的塞尔夫利奇和索罗孟夫,以及兰德公司和卡内基工科大学的纽厄尔和西蒙等十几名青年学者。他们举办了为期两个月的夏季学术谈论班,讨论机器能智问题。经麦卡锡提议,在会上正式使用人工智能这一术语,从而开创了人工智能作为一门独立学科的研究方向。麦卡锡因而被称为“人工智能之父”。

    5年前 0条评论
  • 郑继贤的头像
    郑继贤
    这个人很懒,什么都没有留下~
    评论

    计算机之父冯·诺依曼,人工智能之父马文·明斯基。

    冯·诺依曼,原籍匈牙利,布达佩斯大学数学博士。20世纪最重要的数学家之一,在现代计算机、博弈论、核武器和生化武器等领域内的科学全才之一,被后人称为“计算机之父”和“博弈论之父”。

    马文·明斯基是“人工智能之父”和框架理论的创立者。和麦卡锡一起在1956年发起“达特茅斯会议”并提出人工智能概念的计算机科学家马文·明斯基被授予了1969年度图灵奖,是第一位获此殊荣的人工智能学者。

    扩展资料:

    冯·诺伊曼是二十世纪最重要的数学家之一,在纯粹数学和应用数学方面都有杰出的贡献。他的工作大致可以分为两个时期:

    1940年以前,主要是纯粹数学的研究:在数理逻辑方面提出简单而明确的序数理论,并对集合论进行新的公理化,其中明确区别集合与类。

    其后,他研究希尔伯特空间上线性自伴算子谱理论,从而为量子力学打下数学基础;1930年起,他证明平均遍历定理开拓了遍历理论的新领域。

    1933年,他运用紧致群解决了希尔伯特第五问题。此外,他还在测度论、格论和连续几何学方面也有开创性的贡献;从1936~1943年,他和默里合作,创造了算子环理论,即所谓的冯·诺伊曼代数。

    二次世界大战以前,图灵正是在这里开始研究机器是否可以思考这个问题的,明斯基也在这里开始研究同一问题。1951年他提出了关于思维如何萌发并形成的一些基本理论,并建造了一台学习机,名为Snare。

    Snare是世界上第一个神经网络模拟器,其目的是学习如何穿过迷宫,其组成中包括40个“代理”(agent,国内资料也有把它译为“主体”、“智能体”的)和一个对成功给予奖励的系统。

    参考资料来源:百度百科——马文·明斯基

    参考资料来源:百度百科——约翰·冯·诺依曼

    6年前 0条评论
  • 孙鹏的头像
    孙鹏
    这个人很懒,什么都没有留下~
    评论
    图灵

    阿兰·麦席森·图灵(Alan Mathison Turing,1912.6.23—1954.6.7),英国数学家、逻辑学家,被称为人工智能之父。 1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。

    阿兰·麦席森·图灵,1912年生于英国伦敦,1954年死于英国的曼彻斯特,他是计算机逻辑的奠基者,许多人工智能的重要方法也源自于这位伟大的科学家。他对计算机的重要贡献在于他提出的有限状态自动机也就是图灵机的概念,对于人工智能,它提出了重要的衡量标准“图灵测试”,如果有机器能够通过图灵测试,那他就是一个完全意义上的智能机,和人没有区别了。他杰出的贡献使他成为计算机界的第一人,现在人们为了纪念这位伟大的科学家将计算机界的最高奖定名为“图灵奖”。上中学时,他在科学方面的才能就已经显示出来,这种才能仅仅限于非文科的学科上,他的导师希望这位聪明的孩子也能够在历史和文学上有所成就,但是都没有太大的建树。少年图灵感兴趣的是数学等学科。在加拿大他开始了他的职业数学生涯,在大学期间这位学生似乎对前人现成的理论并不感兴趣,什么东西都要自己来一次。大学毕业后,他前往美国普林斯顿大学也正是在那里,他制造出了以后称之为图灵机的东西。图灵机被公认为现代计算机的原型,这台机器可以读入一系列的零和一,这些数字代表了解决某一问题所需要的步骤,按这个步骤走下去,就可以解决某一特定的问题。这种观念在当时是具有革命性意义的,因为即使在50年代的时候,大部分的计算机还只能解决某一特定问题,不是通用的,而图灵机从理论上却是通用机。在图灵看来,这台机器只用保留一些最简单的指令,一个复杂的工作只用把它分解为这几个最简单的操作就可以实现了,在当时他能够具有这样的思想确实是很了不起的。他相信有一个算法可以解决大部分问题,而困难的部分则是如何确定最简单的指令集,怎么样的指令集才是最少的,而且又能顶用,还有一个难点是如何将复杂问题分解为这些指令的问题。

    1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。

    7年前 0条评论
  • 苑利平的头像
    苑利平
    这个人很懒,什么都没有留下~
    评论
    艾伦·麦席森·图灵(Alan Mathison Turing,1912年6月23日-1954年6月7日),英国数学家、逻辑学家,被称为计算机之父,人工智能之父。来自百度百科,所以他既是计算机之父还是人工智能之父的点个佣人思密达
    7年前 0条评论
  • 然然的头像
    然然
    这个人很懒,什么都没有留下~
    评论
    人工智能之父——约翰·麦卡锡
    人工智能的应用领域 1问题求解 人工智能的第一大成就是下棋程序在下棋程度中应用的某些技术如向前看几步把困难的问题分解成一些较容易的子问题发展成为搜索和问题归纳这样的人工智能基本技术。今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。另一个问题是涉及问题的原概念在人工智能中叫问题表示的选择人们常能找到某种思考问题的方法从而使求解变易而解决该问题。到目前为止人工智能程序已能知道如何考虑它们要解决的问题即搜索解答空间寻找较优解答 2.。逻辑推理与定理证明 逻辑推理是人工智能研究中最持久的领域之一其中特别重要的是要找到一些方法只把注意力集中在一个大型的数据库中的有关事实上留意可信的证明并在出现新信息时适时修正这些证明。对数学中臆测的题。定理寻找一个证明或反证不仅需要有根据假设进行演绎的能力而且许多非形式的工作包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化因此在人工智能方法的研究中定理证明是一个极其重要的论题。 3自然语言处理。 自然语言的处理是人工智能技术应用于实际领域的典型范例经过多年艰苦努力这一领域已获得了大量令人注目的成果。目前该领域的主要课题是计算机系统如何以主题和对话情境为基础注重大量的常识——世界知识和期望作用生成和理解自然语言。这是一个极其复杂的编码和解码问题。 4智能信息检索技术。 受”()*+ (*) 技术迅猛发展的影响信息获取和精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题将人工智能技术应用于这一领域的研究是人工智能走向广泛实际应用的契机与突破口。 5专家系统。 专家系统是目前人工智能中最活跃、最有成效的一个研究领域它是一种具有特定领域内大量知识与经验的程序系统。近年来在“专家系统”或“ 知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识也应该能解决人类专家所解决的问题而且能帮助人类专家发现推理过程中出现的差错现在这一点已被证实。如在矿物勘测、化学分析、规划和医学诊断方面专家系统已经达到了人类专家的水平。成功的例子如PROSPECTOR系统发现了一个钼矿沉积价值超过1亿美元。DENDRL系统的性能已超过一般专家的水平可供数百人在化学结构分析方面的使用。MY CIN系统可以对血液传染病的诊断治疗方案提供咨询意见。经正式鉴定结果对患有细菌血液病、脑膜炎方面的诊断和提供治疗方案已超过了这方面的专家。
    8年前 0条评论
  • A米的头像
    A米
    这个人很懒,什么都没有留下~
    评论
    图灵

    阿兰·麦席森·图灵(Alan Mathison Turing,1912.6.23—1954.6.7),英国数学家、逻辑学家,被称为人工智能之父。 1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。

    阿兰·麦席森·图灵,1912年生于英国伦敦,1954年死于英国的曼彻斯特,他是计算机逻辑的奠基者,许多人工智能的重要方法也源自于这位伟大的科学家。他对计算机的重要贡献在于他提出的有限状态自动机也就是图灵机的概念,对于人工智能,它提出了重要的衡量标准“图灵测试”,如果有机器能够通过图灵测试,那他就是一个完全意义上的智能机,和人没有区别了。他杰出的贡献使他成为计算机界的第一人,现在人们为了纪念这位伟大的科学家将计算机界的最高奖定名为“图灵奖”。上中学时,他在科学方面的才能就已经显示出来,这种才能仅仅限于非文科的学科上,他的导师希望这位聪明的孩子也能够在历史和文学上有所成就,但是都没有太大的建树。少年图灵感兴趣的是数学等学科。在加拿大他开始了他的职业数学生涯,在大学期间这位学生似乎对前人现成的理论并不感兴趣,什么东西都要自己来一次。大学毕业后,他前往美国普林斯顿大学也正是在那里,他制造出了以后称之为图灵机的东西。图灵机被公认为现代计算机的原型,这台机器可以读入一系列的零和一,这些数字代表了解决某一问题所需要的步骤,按这个步骤走下去,就可以解决某一特定的问题。这种观念在当时是具有革命性意义的,因为即使在50年代的时候,大部分的计算机还只能解决某一特定问题,不是通用的,而图灵机从理论上却是通用机。在图灵看来,这台机器只用保留一些最简单的指令,一个复杂的工作只用把它分解为这几个最简单的操作就可以实现了,在当时他能够具有这样的思想确实是很了不起的。他相信有一个算法可以解决大部分问题,而困难的部分则是如何确定最简单的指令集,怎么样的指令集才是最少的,而且又能顶用,还有一个难点是如何将复杂问题分解为这些指令的问题。

    1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。

    【英文简述】
    Alan Mathison Turing, OBE (23 June 1912 – 7 June 1954) was an English mathematician, logician, and cryptographer.

    Turing is often considered to be the father of modern computer science. Turing provided an influential formalisation of the concept of the algorithm and computation with the Turing machine, formulating the now widely accepted “Turing” version of the Church–Turing thesis, namely that any practical computing model has either the equivalent or a subset of the capabilities of a Turing machine. With the Turing test, he made a significant and characteristically provocative contribution to the debate regarding artificial intelligence: whether it will ever be possible to say that a machine is conscious and can think. He later worked at the National Physical Laboratory, creating one of the first designs for a stored-program computer, although it was never actually built. In 1948 he moved to the University of Manchester to work, largely on software, on the Manchester Mark I, then emerging as one of the world’s earliest true computers.

    During the Second World War Turing worked at Bletchley Park, Britain’s codebreaking centre, and was for a time head of Hut 8, the section responsible for German naval cryptanalysis. He devised a number of techniques for breaking German ciphers, including the method of the bombe, an electromechanical machine that could find settings for the Enigma machine.

    In 1952, Turing was convicted of “acts of gross indecency” after admitting to a sexual relationship with a man in Manchester. He was placed on probation and required to undergo hormone therapy. Turing died after eating an apple laced with cyanide in 1954. His death was ruled a suicide.

    【生平】
    ◆故事从谜开始
    英国现代计算机的起步是从德国的密码电报机——Enigma(谜)开始的,而解开这个谜的不是别人,正是阿兰·图灵,一个在计算机界响当当的人物,可与美国的冯·诺依曼相媲美的电脑天才。在他短暂的生涯中,图灵在量子力学、数理逻辑、生物学、化学方面都有深入的研究,在晚年还开创了一门新学科—— 非线性力学。

    图灵英年早逝。在他42年的人生历程中,他的创造力是丰富多彩的,他是天才的数学家和计算机理论专家。24岁提出图灵机理论,31岁参与COLOSSUS的研制,33岁设想仿真系统,35岁提出自动程序设计概念,38岁设计“图灵测验”。这一朵朵灵感浪花无不闪耀着他在计算机发展史上的预见性。特别是在60年代后当然,图灵最高的成就还是在电脑和人工智能方面,他是这一领域开天辟地的大师。为表彰他的贡献,专门设有一个一年一度的“图灵奖”,颁发给最优秀的电脑科学家。这枚奖章就像“诺贝尔奖”一样,为计算机界的获奖者带来至高无上的荣誉。而阿兰·图灵本人,更被人们推崇为人工智能之父,在计算机业十倍速变化的历史画卷中永远占有一席之地。他的惊世才华和盛年夭折,也给他的个人生活涂上了谜一样的传奇色彩。

    ◆神童图灵
    图灵1912年6月23日出生于英国伦敦。其祖父曾获得剑桥大学数学荣誉学位,但他父亲的数学才能平平。因此,图灵的家庭教育,对他以后在数学及计算机方面的成就并没有多少帮助。小时候的图灵生性活泼好动,很早就表现出对科学的探索精神。据他母亲回忆,3岁时,小图灵就进行了他的首次实验,尝试把一个玩具木头人的小胳膊、小腿掰下来栽到花园里,等待长出更多的木头人。到了8岁,他更开始尝试写一部科学著作,题目为《关于一种显微镜》。在这部很短的书中,天才儿童图灵拼错了很多单词,句法也有些问题,但写得还能让人看懂,很像那么一回事儿。在书的开头和结尾,他都用同一句话“首先你必须知道光是直的”作前后呼应, 但中间的内容却很短,短得破了科学著作的记录。图灵曾说 :“我似乎总想从最普通的东西中弄出些名堂。”就连和小朋友们玩足球,他也能放弃当前锋进球这样出风头的事,只喜欢在场外巡边,因为这样能有机会去计算球飞出边界的角度。他的老师认为 :“图灵的头脑思维可以像袋鼠一样进行跳跃。”图灵是个天才。他16岁就开始研究爱因斯坦的相对论。1931年,图灵考入剑桥大学国王学院,开始他的数学生涯,研究量子力学、概率论和逻辑学。在校期间,图灵还是现代语言哲学大师维特根斯坦班上最出色的学生。他对由剑桥大学的罗素和怀特海创立的数理逻辑很感兴趣。数理逻辑的创建,主要源于古希腊克里特岛上有个叫爱皮梅尼特的“智者”,他说 :“所有的克里特岛人都说谎”。我们可以把它简化为:“我说的这句话是假话”。这就出现一种两面都无法自圆的怪圈:如果他没有说谎,那他这句话是错的,他是在说谎;如果他真的在说谎,那他说自己在说谎是对的,所以他又没有说谎。罗素和怀特海把它从逻辑、集合论以及数论中驱逐出去,最后又想尽办法归入《数学原理》之中。

    图灵一上大学,就迷上了《数学原理》。在1931年,著名的“哥德尔定理”出现后(该定理认为没有一种公理系统可以导出数论中所有的真实命题,除非这种系统本身就有悖论),天才的图灵在数理逻辑大本营的剑桥大学提出一个设想:能否有这样一台机器,通过某种一般的机械步骤,能在原则上一个接一个地解决所有的数学问题。大学毕业后,图灵去美国普林斯顿大学攻读博士学位,还顺手发明过一个解码器。在那里,他遇见了冯·诺依曼,后者对他的论文击节赞赏,并随后由此提出了“存储程序”概念。图灵学成后又回到他的母校任教。在短短的时间里,图灵就发表了几篇很有份量的数学论文,为他赢得了很大的声誉。

    ◆怪才图灵
    在剑桥,图灵可称得上是一个怪才,一举一动常常出人意料。他是个单身汉和长跑运动员。在他的同事和学生中间,这位衣着随便、不打领带的著名教授,不善言辞,有些木讷、害羞,常咬指甲,但他更多地以自己杰出的才智赢得了人们的敬意。图灵每天骑自行车上班,因为患过敏性鼻炎,一遇到花粉,就会鼻涕不止,大打喷嚏。于是,他就常常在上班途中戴防毒面具,招摇过市,这早已成为剑桥的一大奇观。图灵的自行车经常半路掉链子,但他就是不肯去车铺修理。每次骑车时,他总是嘴里念念有词,在心里细细计算,这链条也怪,总是转到一定的圈数就滑落了,而图灵竟然能够做到在链条下滑前一刹那停车,让旁观者佩服不已,以为图灵在玩杂技。后来图灵又居然在脚踏车旁装了一个小巧的机械记数器,到圈数时就停,歇口气换换脑子,再重新运动起来。

    1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为《论数字计算在决断难题中的应用》。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算机装置,用来计算所有能想像得到的可计算函数。装置由一个控制器和一根假设两端无界的工作带(起存储器的作用)组成。工作带被划分为大小相同的方格,每一格上可书写一个给定字母表上的符号。控制器可以在带上左右移动,它带有一个读写出一个你期待的结果。外行人看了会坠入云里雾里,而内行人则称它是“阐明现代电脑原理的开山之作”,并冠以“理想计算机”的名称。这篇论文在纸上谈了一把兵,创造出一个“图灵机”来。但现代通用电脑确实是用相应的程序来完成任何设定好的任务。这一理论奠定了整个现代计算机的理论基础。“图灵机”更在电脑史上与“冯·诺依曼机”齐名,被永远载入计算机的发展史中。

    图灵机理论不仅解决了纯数学基础理论问题,一个巨大的“意外”收获则是,理论上证明了研制通用数字计算机的可行性。虽然早在100年前的1834年,巴贝奇(Chark Babbage,1792~1871)就设计制造了“分析机”以说明具体的数字计算,但他的失败之处是没能证明“必然可行”。图灵机理论不仅证明了研制“通用机”的可行性,而且比世界上第一台由德国人朱斯(K·Zuze)于1941年制造的通用程序控制计算机Z-3整整早5年。这不得不使人惊叹这一理论的深刻意义。

    ◆谜语图灵
    正当图灵的理论研究工作进一步深入时,战争爆发了。他被派往布雷契莱庄园承担“超级机密”研究。当时的布雷契莱庄园是一所“政府密码学校”,即战时的英国情报破译中心。在这座幽静的维多利亚式建筑里,表面上鸟语花香、人迹罕见,其实每天都有12000多名志愿者在这里夜以继日地工作,截获、整理、破译德国的军事情报,有些结果甚至直达丘吉尔首相本人手中。在这里,图灵被人们称为“教授”,没有人知道他的真名。当时德国有一个名为“Enigma”(谜)的通信密码机,破译高手们绞尽脑汁也难以破解。这个难题交到了图灵手中,他率领着大约200多名精干人员进行密码分析,其中甚至还包括象棋冠军亚历山大。分析和计算工作非常复杂,26个字母在“Enigma”机中能替代8万亿个谜文字母。如果改动接线,变化会超过2.5千万亿亿。最后多亏波兰同行们提供了一台真正的“Enigma”,图灵才凭借着他的天才设想设计出一种破译机。这台机器主要由继电器构成,还用了80个电子管,由光电阅读器直接读入密码,每秒可读字符2000个,运行起来咔嚓咔嚓直响。它被图灵戏称为“罗宾逊”,至今没人能搞懂图灵究竟如何指挥它工作。但”罗宾逊”的确神通广大,在它的密报下,德国飞机一再落入圈套,死无葬身之地。

    1945年,图灵带着大英帝国授予的荣誉勋章,来到英国国家物理研究所担任高级研究员。两年后,图灵写了一份内部报告,提出了”自动程序”的概念,但由于英国政府严密、死板的保密法令,这份报告一直不见天日。1969年,美国的瓦丁格(Woldingger)发表了同样成果,英国才连忙亮出压在箱底的宝贝,终于在1970年给图灵的报告“解密”。图灵的这份报告后来收入爱丁堡大学编的《机器智能》论文集中。由于有了布雷契莱的经验,图灵提交了一份“自动计算机”的设计方案,领导一批优秀的电子工程师,着手制造一种名叫ACE的新型电脑。它大约用了800 个电子管,成本约为4万英镑。1950年,ACE电脑就横空出世,开始公开露面,为感兴趣的人们玩一些“小把戏”,赢得阵阵喝彩。图灵在介绍ACE的内存装置时说:“它可以很容易把一本书的10页内容记住。”显然,ACE是当时世界上最快、最强劲的电子计算机之一。

    1946年,在纽曼博士的动议下,皇家学会成立电脑实验室。纽曼博士是皇家学会会员,又是当年破译小组的成员,正是他对“赫斯·鲁宾逊”的制造起了关键作用。皇家学会的这一新实验室不在伦敦,而是设在曼彻斯特大学,由纽曼博士牵头负责。1946年7月,研制基金到位,纽曼博士开始招募人选。阿兰·图灵也在次年9月加盟电脑实验室。一时间,曼彻斯特大学群英会萃。实验室设在一幢维多利亚时代的老房子里,条件十分简陋,但因图灵他们的到来,也算是蓬荜生辉了。在1948年6月,这里造出了一台小的模型机,大家都爱叫它“婴儿”(Baby)。这台模型机用阴极射线管来解决存储问题,能存储32个字,每一字有32位字长。这是第一台能完全执行存储程序的电子计算机的模型。

    ◆大师图灵
    到了1949年10月,各项改进工作都已展开,夹在两层存储器之间的自动控制系统已正常运转,并能在程序的控制下,实现磁鼓和阴极射线管存储单元间信息交互。图灵设计出一些协同电路来做输入和输出的外设。有关电动打字设备也是图灵通过老关系从他战时供职的外交部通信部门弄过来的,其中甚至包括一个战后从德国人那里收缴来的穿孔纸带键盘。这样,整个模型机已大功告成。在整个试验阶段,大家忙上忙下。1949年底,模型机交付给曼彻斯特当地的一家叫弗兰尼蒂(Ferranti)的电子公司,开始正式建造。1951年2月完工,通称“迈可1型”。它有4000个电子管,72000个电阻器,2500个电容器,能在0.1秒内开平方根、求对数和三角函数的运算。比起先前的模型机,“迈可1型”功能更为齐全,静电存储器的内存容量已翻倍,能存256个40位字长字,分别存在8个阴极射线管中,而磁鼓的容量能扩容到16384个字,真是一项了不起的工程。

    与冯·诺依曼同时代的富兰克尔(Frankel,冯氏同事)在回忆中说:冯·诺依曼没有说过”存储程序”型计算机的概念是他的发明,却不止一次地说过,图灵是现代计算机设计思想的创始人。当有人将”电子计算机之父”的头衔戴在冯·诺依曼头上时,他谦逊地说,真正的计算机之父应该是图灵。当然,冯·诺依曼问之无愧,而图灵也有“人工智能之父”的桂冠。他俩是计算机历史浩瀚星空中相互映照的两颗巨星。

    早在1945年,图灵就提出“仿真系统”的思想,并有一份详细的报告,想建造一台没有固定指令系统的电脑。它能够模拟其他不同指令系统的电脑的功能, 但这份报告直到1972年才公布。这说明图灵在二战结束后就开始了后来被称 为“人工智能”领域的探索,他开始关注人的神经网络和电脑计算之间的关联。

    1950年,图灵又来到曼彻斯特大学任教,同时还担任该大学自动计算机项目的负责人。就在这一年的十月,他又发表了另一篇题为《机器能思考吗?》的论文,成为划时代之作。也正是这篇文章,为图灵赢得了一顶桂冠——“人工智能之父”。在这篇论文里,图灵第一次提出“机器思维”的概念。他逐条反驳了机器不能思维的论调,做出了肯定的回答。他还对智能问题从行为主义的角度给出了定义,由此提出一假想:即一个人在不接触对方的情况下,通过一种特殊的方式,和对方进行一系列的问答,如果在相当长时间内,他无法根据这些问题判断对方是人还是计算机,那么,就可以认为这个计算机具有同人相当的智力,即这台计算机是能思维的。这就是著名的“图灵测试”(Turing Testing)。当时全世界只有几台电脑,根本无法通过这一测试。但图灵预言,在本世纪末,一定会有电脑通过“图灵测试”。终于他的预言在IBM的“深蓝”身上得到彻底实现。当然,卡斯帕罗夫和“深蓝”之间不是猜谜式的泛泛而谈,而是你输我赢的彼此较量。

    ◆故事以谜结束
    1951年,图灵以他杰出的贡献被当选为英国皇家学会会员。就在他事业步入辉煌之际,灾难降临了。1952年,图灵遭到警方拘捕,原因是他是一个同性恋者。与其他一些智慧超群的人物一样,图灵在个人生活方式上也“与众不同”。当时,人们对同性恋还没有像现在这样宽容,而是把这种行为当作一桩伤风败俗的罪孽。事情的败露是这样的,当时有一位叫琼·克拉克(Joan Clarke)的姑娘爱上了图灵,图灵也对对方很有好感,并向对方求婚,琼欣然接受。但不久,图灵自己退缩了,告诉琼,他是同性恋者。在1948年,图灵就由于同性恋倾向,离开了当时属于高度保密的英国国家物理实验室(NPL)。但也有人说,图灵是被英国军事情报部门“开除”出去的,对于这位天才的离去,许多人怅惜不已。

    1952年3月31日,图灵更因为和曼彻斯特当地一位青年有染,被警方逮捕。在法庭上,图灵既不否认,也不为自己辨解。在庄严的法庭上,他郑重其事地告诉人们:他的行为没有错,结果被判有罪。在入狱和治疗两者中间,图灵选择了注射激素,来治疗所谓的“性欲倒错”。此后图灵开始研究生物学、化学,还和一位心理医生有很深的交往。那时,他的脾气已变得躁怒不安,性格更为阴沉怪僻。1953年3月,他因为接待过一位被英国警方注意的挪威客人,成为警方的目标,甚至去希腊度假时也被跟踪。

    1954年6月8日,图灵42岁,正逢进入他生命中最辉煌的创造顶峰。一天早晨,女管家走进他的卧室,发现台灯还亮着,床头上还有个苹果,只咬了一小半,图灵沉睡在床上,一切都和往常一样。但这一次,图灵是永远地睡着了,不会再醒来……经过解剖,法医断定是剧毒氰化物致死,那个苹果是在氰化物溶液中浸泡过的。图灵的母亲则说他是在做化学实验时,不小心沾上的,她的”艾伦”从小就有咬指甲的习惯。但外界的说法是服毒自杀,一代天才就这样走完了人生。

    今天,苹果电脑公司以那个咬了一口的苹果作为其商标图案,就是为纪念这位伟大的人工智能领域的先驱者——图灵。

    【大事年表】
    1912年6月23日,出生于英国伦敦。
    1931年-1934年,在英国剑桥大学国王学院(King’s College)学习。
    1932年-1935年,主要研究量子力学、概率论和逻辑学。
    1935年,年仅23岁的图灵,被选为剑桥大学国王学院院士。
    1936年,主要研究可计算理论,并提出“图灵机”的构想。
    1936年-1938年,主要在美国普林斯顿大学做博士研究,涉及逻辑学、代数和数论等领域。
    1938-1939年,返回剑桥从事研究工作,并应邀加入英国政府破译二战德军密码的工作。
    1940年-1942年,作为主要参与者和贡献者之一,在破译纳粹德国通讯密码的工作上成就杰出,并成功破译了德军U-潜艇密码,为扭转二战盟军的大西洋战场战局立下汗马功劳。
    1943年-1945年,担任英美密码破译部门的总顾问。
    1945年,应邀在英国国家物理实验室从事计算机理论研究工作。
    1946年,这个时候,图灵在计算机和程序设计原始理论上的构思和成果,已经确定了他的理论开创者的地位。由于图灵的杰出贡献,年轻的他被英国皇室授予OBE爵士勋衔。
    1947年-1948年,主要从事计算机程序理论的研究,并同时在神经网络和人工智能领域做出开创性的理论研究。
    1948年,应邀加入英国曼彻斯特大学从事研究工作,担任曼彻斯特大学计算实验室副主任。
    1949年,成为世界上第一位把计算机实际用于数学研究的科学家。
    1950年,发表论文“计算机器与智能”,为后来的人工智能科学提供了开创性的构思。提出著名的“图灵测试”理论。
    1951年,从事生物的非线性理论研究。年仅39岁的图林,被选为英国皇家学会会员。
    1952年,在当年保守愚昧和冷战的时代,当警察得知图灵与同性朋友密切交往的消息之后,同性恋倾向的图灵被逮捕入狱。在法庭审判过程中,图灵明确告知人们,他认为自己没有做错什么事。在那个观念落后的年代,为了避免被判刑入狱,图灵被迫选择了为期一年的雌性激素注射的所谓“治疗”,才得以重新返回研究工作。
    1953年-1954年,继续在生物和物理学等方面的研究。被迫承受的对同性恋倾向的“治疗”,致使原本热爱体育运动的图灵在身心上受到极大的伤害。
    1954年6月7日,图灵被发现死于家中的床上。死因是氰化物中毒,警方调查结论是自杀。一代英灵,就此过早离去,成为人类科学史上的一大遗憾。

    17年前 0条评论
  • Guo的头像
    Guo
    这个人很懒,什么都没有留下~
    评论
    约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对 孩子的教育。冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘。据说他6岁时就能用古 希腊语同父亲闲谈,一生掌握了七种语言。最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语。他对读过的书籍和论文。能很快一句不差地将内容复述出来,而且若干年之后,仍可如此。1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重。在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁。1921年一1923年在苏黎世大学学习。很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁。1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国。1931年成为该校终身教授。1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生。 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士。他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土。 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席。
    鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为”计算机之父”。
    计算机科学之父:阿兰-图灵
    19年前 0条评论
客服
客服
关注订阅号
关注订阅号
分享本页
返回顶部