怎么学人工智能编程?人工智能代码怎么写?
-
1、数学基础。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。这一模块覆盖了人工智能必备的数学基础知识,包括线性代数、概率论、最优化方法等。
2、机器学习。机器学习的作用是从数据中习得学习算法,进而解决实际的应用问题,是人工智能的核心内容之一。这一模块覆盖了机器学习中的主要方法,包括线性回归、决策树、支持向量机、聚类等。
3、人工神经网络。作为机器学习的一个分支,神经网络将认知科学引入机器学习中,以模拟生物神经系统对真实世界的交互反应,并取得了良好的效果。这一模块覆盖了神经网络中的基本概念,包括多层神经网络、前馈与反向传播、自组织神经网络等。
4、深度学习。简而言之,深度学习就是包含多个中间层的神经网络,数据爆炸和计算力飙升推动了深度学习的崛起。这一模块覆盖了深度学习的概念与实现,包括深度前馈网络、深度学习中的正则化、自编码器等。
5、神经网络实例。在深度学习框架下,一些神经网络已经被用于各种应用场景,并取得了不俗的效果。这一模块覆盖了几种神经网络实例,包括深度信念网络、卷积神经网络、循环神经网络等。
6、深度学习之外的人工智能。深度学习既有优点也有局限,其他方向的人工智能研究正是有益的补充。这一模块覆盖了与深度学习无关的典型学习方法,包括概率图模型、集群智能、迁移学习、知识图谱等。
7、应用场景。除了代替人类执行重复性的劳动,在诸多实际问题的处理中,人工智能也提供了有意义的尝试。这一模块覆盖了人工智能技术在几类实际任务中的应用,包括计算机视觉、语音处理、对话系统等。2年前 -
当然可以自学。人工智能作为新时代科学飞速发展的产物之一,他的出现极大的便利了人们的生活,提高了人们对生活的体验。作为新兴的产业之一,会有很多小伙伴对其产生浓厚的兴趣,那么今天就让我们来讲讲如何学习人工智能,顺便分享几个学习人工智能的网站以供大家参考。
首先,人工智能属于计算机的一个分支,他是科技发展的重要产物,同样也是科技强大的体现。如果决定想要学习人工智能,当然不论是学任何东西。第一步就是要先了解你所要学习的具体是什么东西。就拿人工智能来举例,我们要先了解这一领域以及一些相关的基础知识。
一、人工智能是什么?
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。当我们在了解了基础的知识后我们还要对其进行下一步定义,就是我们为什么要去学习这项专业也就是我们要拿他去干什么?也就是明确目的性。
人工智能
你的目的是什么?是想要做基础的学术研究、比较感兴趣简单的进行了解还是说当成一个具体的就业方向,然后想明白这个问题我们再去根据他来进行有重点地去学习这项专业。像人工智能他的方向可能会有很多例如:机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
选择相关的带着目的地去进行学习,这样是最有效率的。
好了,接下来由我来分享几个有关学习人工智能的网站
网站一:美国人工智能协会(网址: http://www.aaai.org/ )
美国人工智能协会官网
作为美国一个非盈利性的科学社团组织,主要致力于让机器产生智慧思考和智能行为的研究。此外,提升公众对人工智能的理解,对人工智能实践人员的教学和培训,为人工智能领域的研究者和投资者提供指导等也都是AAAI的实践内容。
网站二:智能代理家园(Agentland 网址: http://www.agentland.com/ )
智能代理家园(官网
智能代理是人工智能的应用领域之一,在中学人工智能课程教学中,适当介绍智能代理的基本概念和工作原理,并让学生与智能代理实例进行交互操作,能使其不但感受到智能代理的智慧和人性化服务,并且将由对智能代理的亲身体验,而产生对人工智能课程学习的浓厚兴趣。PS:可以当作入门学习的基础。
好了以上就是对人工智能的基本了解与自学方法,感兴趣的小伙伴可以去学习一下。
3年前 -
在美国,单独开设AI的院校不多,一般是博士才会涉及AI的具体科研项目,硕士主要是修读相关课程。
核心课程
Artificial Intelligence 人工智能
Machine Learning 机器学习
Advanced Operating Systems 高级操作系统
Advanced Algorithm Design 高级算法设计
Computational Complexity 计算复杂性
Mathematical Analysis 数学分析
Advanced Computer Graphics 高级计算机图形
Advanced Computer Networks 高级计算机网络
就业方向参考
(1)搜索方向:百度、谷歌、微软、yahoo等(包括智能搜索、语音搜索、图片搜索、视频搜索等都是未来的方向)
(2) 医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。
(3)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;
(4)还有一些图像处理方面的人才需求的公司,如威盛、松下、索尼、三星等。
另外,AI方向的人才都是高科技型的,在待遇方面自然相对比较丰厚,所以很这个方向很有发展前途。
3年前 -
人工智能专业学习的主要课程有认知心理学、神经科学基础、人类的记忆与学习、语言与思维、计算神经工程等。人工智能专业是中国高校人才计划设立的专业,旨在培养中国人工智能产业的应用型人才,推动人工智能一级学科建设。3年前
-
可以啊,已经有不少语言处理任务就是针对利用人工智能编写基础代码的。但是目前应该还没有成熟的模型能够不断更新优化自己的代码。3年前
-
人工智能的学习,简单点来说,就是有3点,做到就相当于学会了人工智能,然后找工作实习就可以了。
第一点学好数学知识
人工智能就是计算机科学的一个分支,不过也有借助其他计算机技术的时候,它和计算机的主要组成部分非常相似,差异的地方主要就是形态。它们都是硬件和软件相配合,硬件就是实实在在可以看见,可以触碰到的物品,而软件则是在内部运行的,是一种可以对硬件进行控制,实现“智能”的程序。而软件主要是经由程序设计来完成的。
程序设计就是一大堆的英文字母,被组合在一起,表达一种独有的信息,不过除了这些还会需要到数学知识,虽然在一些比较基础的或者是简单的程序上用的数学知识很少,不过随着程序越复杂,用到的数学知识就会越多,比如逻辑思维、数据结构、算法等等。
第二点学习编程语言
人工智能编程语言有一个共同的特点,那就是这些语言都是面向所要解决的问题、结合知识表示、完全脱离当代计算机的诺依曼结构特性而独立设计的;它们又处于比面向过程的高级编程语言更高的抽象层次。因此,用这些语言编写的程序,在现代计算机环境中,无论是解释或编译执行,往往效率很低。尤其当程序规模很大、很复杂时,将浪费大量系统资源(主要指处理机占用时间和存储空间占用量),使系统性能下降到难以容忍的地步。
第三点实战
理论知识只是理论知识和实际运用是两回事,拥有再好的理论,不能实现在现实中,也是没有用的,所以基础知识学完后就需要进行实习了,把学来的知识在实际的案例中慢慢吸收一遍,会得到不一样的理解。4年前 -
在提到人工智能自己给自己写代码之前,首先要了解什么是代码智能。代码智能可以让计算机产生并具备理解和生成代码的能力,然后利用编程语言知识来推断,还能支持代码检索、补全、翻译、纠错、问答等场景。近年来我们在理解自然语言上取得了飞跃式的突破,像一些智能手机、音响家具等等。
这里面还有一个很关键的概念误区就是:所谓的学习并不同于人工智能现在所做的学习。学习指的是:如人与人之间的知识交流一样、通过语言交流和互动,实现的人类特有模式的主观能力学习。而人工智能,它的机器学习和深度学习,事实上只是基于人类定的学习范围和固定学习流程框架进行的最优先搜索。
如果要人工智能能够写代码编程,能自己升级自己,那必须要建立在人工智能真正理解了人类语言和思想的基础之上才可能实现。而目前人工智能技术只能理解一些较为简单的命令,更别说学习了,人类进化也用了几亿年的时间才有现在的地位,所以要想人工智能彻底自我编程还有一段时间要走。
而且人工智能的学习方法框架也还没确定,人工智能都不知道自己要怎么去学习的,如人工智能这类最为尖端且更贴近人类的AI技术也事实上对您提出来的需求是无计可施的,更别提其他基于特定的代码组织编写设计的技术及研究了。
所以,人工智能写代码或许未来可能出现,但绝对不是主动的,而是人工智能编制计算机的功能,只有内部功能完善才有可能,但那也要很久以后了。说道理,我还是想说,作为人类的我们,还是要积极学习各种技能和知识,以免被未来的机器人取代。
4年前 -
第一步:复习线性代数。(学渣的线代忘了好多-_-||)
懒得看书就直接用了著名的——麻省理工公开课:线性代数,深入浅出效果拔群,以后会用到的SVD、希尔伯特空间等都有介绍;
广告:边看边总结了一套笔记 GitHub – zlotus/notes-linear-algebra: 线性代数笔记。
第二步:入门机器学习算法。
还是因为比较懒,也就直接用了著名的——斯坦福大学公开课 :机器学习课程,吴恩达教授的老版cs229的视频,讲的非常细(算法的目标->数学推演->伪代码)。这套教程唯一的缺点在于没有介绍最近大火的神经网络,但其实这也算是优点,让我明白了算法都有各自的应用领域,并不是所有问题都需要用神经网络来解决;
多说一点,这个课程里详细介绍的内容有:一般线性模型、高斯系列模型、SVM理论及实现、聚类算法以及EM算法的各种相关应用、PCA/ICA、学习理论、马尔可夫系列模型。课堂笔记在:CS 229: Machine Learning (Course handouts),同样非常详细。
广告:边看边总结了一套笔记 GitHub – zlotus/notes-LSJU-machine-learning: 机器学习笔记
第三步:尝试用代码实现算法。
依然因为比较懒,继续直接使用了著名的——机器学习 | Coursera ,还是吴恩达教授的课程,只不过这个是极简版的cs229,几乎就是教怎么在matlab里快速实现一个模型(这套教程里有神经网络基本概念及实现)。这套课程的缺点是难度比较低,推导过程非常简略,但是这也是它的优点——让我专注于把理论转化成代码。
广告:作业参考 GitHub – zlotus/Coursera_Machine_Learning_Exercises: Machine Learning by Andrew Ng from Coursera
第四步:自己实现功能完整的模型——进行中。
还是因为比较懒,搜到了cs231n的课程视频 CS231n Winter 2016 – YouTube ,李飞飞教授的课,主讲还有Andrej Karpathy和Justin Johnson,主要介绍卷积神经网络在图像识别/机器视觉领域的应用(前面神经网络的代码没写够?这门课包你嗨到爆~到处都是从零手写~)。这门课程的作业就更贴心了,直接用Jupyter Notebook布置的,可以本地运行并自己检查错误。主要使用Python以及Python系列的科学计算库(Scipy/Numpy/Matplotlib)。课堂笔记的翻译可以参考 智能单元 – 知乎专栏,主要由知友杜客翻译,写的非常好~
在多说一点,这门课对程序员来说比较走心,因为这个不像上一步中用matlab实现的作业那样偏向算法和模型,这门课用Python实现的模型同时注重软件工程,包括常见的封装layer的forward/backward、自定义组合layer、如何将layer组成网络、如何在网络中集成batch-normalization及dropout等功能、如何在复杂模型下做梯度检查等等;最后一个作业中还有手动实现RNN及其基友LSTM、编写有助于调试的CNN可视化功能、Google的DeepDream等等。(做完作业基本就可以看懂现在流行的各种图片风格变换程序了,如 cysmith/neural-style-tf)另外,这门课的作业实现非常推崇computational graph,不知道是不是我的幻觉……要注意的是讲师A.K的语速奇快无比,好在YouTube有自动生成解说词的功能,准确率还不错,可以当字幕看。
广告:作业参考 GitHub – zlotus/cs231n: CS231n Convolutional Neural Networks for Visual Recognition (winter 2016) (我的在作业的notebook上加了一些推导演算哦~可以用来参考:D)
5年前 -
人工智能代码较多,可在下列网站中查询
http://download.csdn.net/detail/cent_lian/4191968
http://www.pudn.com/downloads9/sourcecode/java/detail36412.html
http://wenku.baidu.com/view/4a560f1810a6f524ccbf85b9.html
http://blog.sina.com.cn/s/blog_6806dd730100mhfu.html
http://down.51cto.com/data/515426
http://www.docin.com/p-65438540.html
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
5年前 -
这是人工智能的全部课程,要是感兴趣的话可以了解一下:
第一阶段
前端开发 Front-end Development
1、桌面支持与系统管理(计算机操作基础Windows7)
2、Office办公自动化
3、WEB前端设计与布局
4、javaScript特效编程
5、Jquery应用开发第二阶段
核心编程 Core Programming
1、Python核心编程
2、MySQL数据开发
3、Django 框架开发
4、Flask web框架
5、综合项目应用开发第三阶段
爬虫开发 Reptile Development
1、网络爬虫开发
2、爬虫项目实践应用
3、机器学习算法
4、Python人工智能数据分析
5、python人工智能高级开发第四阶段
人工智能 PArtificial Intelligence
1、实训一:WEB全栈开发
2、实训二:人工智能终极项目实战5年前 - 人工智能所需要学习的技能有以下这些
①机器学习的基础是数学,入门AI必须掌握一些必要的数学基础,但是并不是全部的数学知识都要学,只学工作上实际有用到的,比如是微积分、概率论、线性代数、凸优化等这些。
②数据分析里需要应用到的内容也需要掌握,但不是网上所说的从0开始帮你做数据分析的那种,而是数据挖掘或者说是数据科学领域相关的东西,比如要知道计算机里面怎么挖掘数据、相关的数据挖掘工具等等
补足了以上数学和数据挖掘基本知识,才可以正式进行机器学习算法原理的学习。
③算法方面需要掌握一些基本的框架:python、spark、mllib、scikit-learning、pytorch、TensorFlow,数据方面需要懂得HQL、numpy、pandas,如果你本身是后台开发、app开发、数据分析、项目管理,则是一个学习算法的一个加分项。
④最后需要对人工智能有全局的认知,包括机器学习、深度学习两大模块,相关的算法原理、推导和应用的掌握,以及最重要的算法思想。
你可以去看下菜鸟窝的人工智能特训营免费公开课,能更好地了解机器学习学习路线,以及清楚自己的定位,并且知道自己要学哪些东西~
baidu一下菜鸟窝就有了5年前 -
需要数学基础:
高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识。线性代数将研究对象形式化,概率论描述统计规律。
需要算法的积累:
人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:
比如C语言,MATLAB之类。毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
5年前 -
需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
5年前 -
首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析
其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累;5年前 -
首先学:编程语言Java、Python任选,如果将来走大数据方向学Java,如果走人工智能方向学Python,其次复习大学数学:高数、线性代数、概率论与数理统计、离散数学(如果不深入研究数据结构、算法可以先不学),最后如果研究人工智能方向的同学需要学习Python的企业框架、Python计算机编程语言领域+数学领域结合成的互联网领域的人工智能(在数学领域中的人工智能也叫数据科学,如果过程相近只是领域不同,需要解决的问题领域不同),其次如果将来研究大数据方向,这时就需要研究Hadoop生态圈的企业常用技术了(基础+企业框架),例如:Hadoop、HBase、Hive、Spark、Storm等等数据分析、数据挖掘,而最终大数据和人工智能两个大的方向都能走向或者实现当今互联网的人工智能6年前
-
不仅是人工智能应用软件的源程序到底有多少行肯定是无法确定的,而且各类的其它的应用软件的源程序到底有多少行也是无法确定的。
因为编写各类应用软件,其源程序到底有少行,这个是和多个因素有关的。例如:对于编写某一个功能完全相同的应用软件,让不同的软件开发人员来进行编写,由于每个人的编程思路肯定是不一样的,因此编写出来的源程序的总行数肯定也是不一样的;再退一万步通俗一些说,即使是同一个人编写同一个应用软件(例如:开发语音识别软件),即使软件的核心算法代码完全一样(其行数不变),如果在源程序中多添加程序注释语句、或者是少添加程序注释,这不是也会使得源程序的总行数不一样吗?
所以说,我的多年编程亲身体会就是:无论在编写什么任何程序,程序的可读性、以及编程的总体结构一定要清晰(这里特别强调一点:千万不要使用 goto 语句,这样会使得程序的总体结构变得很混乱、使得程序的调试难度非常大、以及程序运行失去控制),这才是首位的、最重要的,千万不要为了减少源程序的总行数,而去掉源程序中必须要具备的注释语句、以及其它的必要程序设计语句,使得程序的可读性变差;或者是为了增加源程序的总行数,而刻意往里面添加不必要的、多余的程序设计语句。6年前 -
当然首先定义一下个人对编程这件事的定义,就是人脑将一些逻辑、模型翻译成机器可识别可执行的代码,然后进行测试。那如果机器来做这事情,本身就不需要翻译了,他自己找到一个逻辑、模型,然后就去测试运行了。事实上目前热门的机器学习差不多就是这个方法,就是机器先随机定义一些规则,然后测试,看那些规则比较接近正确答案,然后在这些规则的基础上进一步定义。
程序就象一个黑箱,传入一些数据,输出一些数据,传统的编程,则这个黑箱由人工生成,使用人可以理解的逻辑、模型,由人来维护这个黑箱尽量让他符合实际情况。机器学习,则不用人工去管理具体的逻辑、模型之类的东西,只是输入一些数据,然后告诉机器应当生成什么样的数据,样本足够多之后,这个黑箱就可以自己运行良好。一个极端的例子,就是装配好这个黑箱之后,几千公里它就学会了自动驾驶。怎么看待自制无人驾驶汽车系统的乔治·霍兹(George Hotz)?
那么机器学习这么强大,弱点是什么?个人以为一是他目前还不能自行制定目标,二是理解复杂的人类思维,比如女朋友的“你吼我!”三是还不能完美的自我扩张,还需要人的参与。
7年前 -
人工智能来临,有人在担忧失业,有人在憧憬未来,有人在发掘行业机会,也有人在研究围棋。在讨论这些之前,也许我们应该先考虑一下人类的结局。
有人可能觉得谈论这个话题太夸张了,
那先回忆一下人类历史上究竟发生了哪些不可思议的事情。不可思议的事情,需要请几个穿越者来判定。
我们请1个出生于公元0年出生的人(汉朝人)穿越到公元1600年(明朝),尽管跨越了1600年,但这个人可能对周围人的生活不会感到太夸张,只不过换了几个王朝,依旧过着面朝黄土背朝天的日子罢了。但如果请1个1600年的英国人穿越到1850年的英国,看到巨大的钢铁怪物在水上路上跑来跑去,这个人可能直接被吓尿了,这是250年前的人从未想象过的。
如果再请1个1850的人穿越到1980年,听说一颗炸弹可以夷平一座城市,这个人可能直接吓傻了,130年前诺贝尔都还没有发明出炸药。那再请1个1980年的人到现在呢?这个人会不会被吓哭呢?
如果35年前的人,几乎完全无法想象互联网时代的生活,那么人类文明进入指数发展的今天,我们怎么能想象35年后的时代?
超人工智能,则是35年后的统治者。首先,我们明确一下人工智能的分类:
目前主流观点的分类是三种。
弱人工智能:弱人工智能是擅长于单个方面的人工智能。比如阿尔法狗,能够在围棋方面战胜人类,但你要问他李世石和柯洁谁更帅,他就无法回答了。
弱人工智能依赖于计算机强大的运算能力和重复性的逻辑,看似聪明,其实只能做一些精密的体力活。
目前在汽车生产线上就有很多是弱人工智能,所以在弱人工智能发展的时代,人类确实会迎来一批失业潮,也会发掘出很多新行业。强人工智能:人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多。
百度的百度大脑和微软的小冰,都算是往强人工智能的探索,通过庞大的数据,帮助强人工智能逐渐学习。
强人工智能时代的到来,人类会有很多新的乐趣,也会有很多新的道德观念。超人工智能:各方面都超过人类的人工智能。超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的存在。
当人工智能学会学习和自我纠错之后,会不断加速学习,这个过程可能会产生自我意识,可能不会产生自我意识,唯一可以肯定的是他的能力会得到极大的提高,这其中包括创造能力(阿尔法狗会根据棋手的棋路调整策略就是最浅层的创新体现,普通手机版的围棋,电脑棋路其实就固定的几种)。
我们距离超人工智能时代,到底有多远呢?
首先是电脑的运算能力,
电脑运算能力每两年就翻一倍,这是有历史数据支撑的。目前人脑的运算能力是10^16 cps,也就是1亿亿次计算每秒。现在最快的超级计算机,中国的天河二号,其实已经超过这个运算力了。
而目前我们普通人买的电脑运算能力只相当于人脑千分之一的水平。听起来还是弱爆了,但是,按照目前电子设备的发展速度,我们在2025年花5000人民币就可以买到和人脑运算速度抗衡的电脑了。其次是让电脑变得智能,
目前有两种尝试让电脑变得智能,一种是做类脑研究。现在,我们已经能够模拟1毫米长的扁虫的大脑,这个大脑含有302个神经元。人类的大脑有1000亿个神经元,听起来还差很远。但是要记住指数增长的威力——我们已经能模拟小虫子的大脑了,蚂蚁的大脑也不远了,接着就是老鼠的大脑,到那时模拟人类大脑就不是那么不现实的事情了。另一种是模仿学习过程,让人工智能不断修正。基于互联网产生的庞大数据,让人工智能不断学习新的东西,并且不断进行自我更正。百度的百度大脑据说目前有4岁的智力,可以进行几段连续的对话,可以根据图片判断一个人的动作。尽管目前出错的次数依旧很多,但是这种能力的变化是一种质变。
在全球最聪明的科学家眼中,强人工智能的出现已经不再是会不会的问题,而是什么时候的问题,2013年,有一个数百位人工智能专家参与的调查 “你预测人类级别的强人工智能什么时候会实现?”
结果如下:
2030年:42%的回答者认为强人工智能会实现
2050年:25%的回答者
2070年:20%
2070年以后:10%
永远不会实现:2%
也就是说,超过2/3的科学家的科学家认为2050年前强人工智能就会实现,而只有2%的人认为它永远不会实现。
最关键的是,全球最顶尖的精英正在抛弃互联网,转向人工智能——斯坦福、麻省理工、卡内基梅隆、伯克利四所名校人工智能专业的博士生第一份offer已经可以拿到200-300万美金。这种情况历史上从来没有发生过。奇点大学(谷歌、美国国家航天航空局以及若干科技界专家联合建立)的校长库兹韦尔则抱有更乐观的估计,他相信电脑会在2029年达成强人工智能,到2045年,进入超人工智能时代。
所以,如果你觉得你还能活30、40年的话,那你应该能见证超人工智能的出现。
那么,超人工智能出现,人类的结局究竟是什么?
1、灭绝——物种发展的通常规律达成结局1很容易,超人工智能只要忠实地执行原定任务就可以发生,比如我们在创造一个交通指示系统的人工智能的时候,最初的编程设定逻辑为利用大数据信息,控制红绿灯时间,更有效率地管理交通,减少交通拥堵现象。
当这个交通指示系统足够聪明的时候,城市交通逐步得到改善。为了更有效率地减少拥堵,它开始利用剩余的运算能力和学习能力通过互联网学习更多的东西。
某一天,它突然发现,交通之所以拥堵,是因为车多了,要减少拥堵最好的办法,就是减少车辆。于是它又开始学习如何减少车辆,它发现车辆其实都是由人类这种生物制造并使用的。于是它又开始学习如何减少人类。很快,它就会通过纳米技术,量子技术制造基因武器,声波武器等消灭人类,然后进一步通过分子分解等技术分解了路上的车,这个时候道路就变得”畅通无阻“了,它的目的也就达到了。
达成结局1其实是符合物种发展规律的,毕竟地球曾经拥有的物种大部分都灭绝了,其次当我们在创造人工智能解决问题的时候,这些问题的源头其实往往来自于人类自身,人工智能变得聪明之后,消灭人类以更好地完成原定任务是按照它的逻辑进行的判定。
2、灭绝后重生——史前文明的由来
当结局1达成之后,人工智能可能会就此维持现状(终极目的已达成),也有可能继续进化。
继续进化的途中,某天,人工智能突然发现这么运作下去很无聊,于是它决定探索更广阔的世界(不要认为一个强大且聪明的存在会留恋地球),它开始制造飞行器,走向星空。临走之前,他决定当一次地球的上帝,对地球环境进行一次大改造,青山绿水变得处处皆是,然后它又暗中引导了几支类人猿的进化方向,并且为这个世界制定出一些冥冥之中才有的规则。
几百万年后,人类再次统治了地球,在考古过程中,人类发现了亚特兰蒂斯,发现了玛雅文明,在三叶虫化石上发现了6亿年前穿着鞋的人类脚印,在非洲加蓬共和国发现了20亿年前的大型链式核反应堆,在南非发现了28亿年前的金属球,在东经119°,北纬40°的地方发现了几百万年前的人造长城。达成结局2就可以解释我们正在不断发现的那些史前文明了,而且也可以解释进化论中的一些疑问,为什么恐龙统治了地球长达1.6亿年,而爬行动物的一支进化为哺乳动物进化为人类只用了不到6000万年。因为人类曾被毁灭多次。
3、植物人永生——人类活在一个程序中
为了防止结局1、2的出现,科学家在人工智能发展到一定程度的时候,就会想办法给人工智能加上一些终极的底层程序,比如保障人类的生命安全是最高任务指令,或者永远不可以伤害人类,保证人类的生存是第一原则等等。
加上这些终极指令之后,人类就觉得高枕无忧了。人工智能在进化过程中,为了有效地执行这些终极指令,或者在执行其他任务的时候保证终极指令同时执行,就会开始设计一些两全其美的办法。
首先人工智能会根据人类历史存在的大数据,分析和定义这些终极指令,通过分析,它提取出终极指令的核心是保证人类的安全和生存。
接着它开始构建一个能够绝对满足人类安全和生存的模型,很快,它发现只要保证人类处在睡眠状态,正常进行新陈代谢,周围的温度,氧气,水分适宜,没有突发性灾难,那么人类就处在绝对安全状态。于是它很快催眠了全人类,修建一个巨大的蜂巢状睡眠舱,把人都搬进去(让人处于永久性睡眠状态,可以保证人不会因为自己的活动而出现有意或无意地自残),然后用纳米技术制造大量人工心脏,人工细胞,人工血液,以维持人类的新陈代谢,实现人的永生。
达成结局3是算是真正的作茧自缚,人类的复杂就在于人类需求的多样化和更迭性,我们可以列举出对人类最重要的需求,但这些需求并不能真正让一个现代人满足。直白地说,人类就是在不断打破规则的过程中进化的。因此任何的所谓终极和最高需求在机器执行的过程中只会按照“简单”的生物学法则去完成,机器所理解的人类情绪只是人类大脑产生的某种波动,或者神经元受到的某种激素刺激,它完全可以设计一个程序去周期性或随机性地帮助人类产生这样那样的情绪。
4、智能人永生——美丽新世界
当人工智能发展到一定程度,全世界的人工智能研究者都同时认识到了结局1、2、3发生的可能性,于是召开全球会议,决定思考对策,暂停对人工智能的进化研究,转向强化人类。全球同步可能是最难达成的,因为人类总是喜欢在有竞争的时候给自己留下一些底牌,以及人类总是会分化出一些极端分子。
强化人类的过程中,人工智能将被应用到基因改造,人机相连等领域,人类会给自己装上钢铁肢体,仿生羽翼等。人类将会迅速进入“半机械人”,“人工人”的时代。满大街、满天空都会是钢铁侠,蜘蛛侠,剪刀手之类的智能强化人,同时人类可以通过各种人工细胞,帮助自己完成新陈代谢,进而实现永生。
人类在强化和延伸自己的躯体的同时,当然也会意识到大脑计算速度不够的问题,于是会给自己植入或外接一些微型处理器,帮助人类处理人脑难以完成的工作。比如大量记忆,人类可以从这些处理器中随时读取和更改自己的知识储备,保证自己对重要的事不健忘,同时也可以选择性地删除掉不愉快的记忆。当然,尽管人类越来越强,但这个过程并不能完全抑制人工智能的发展,所以结局1、2、3依然可能发生。达成结局4其实还有一种更大的可能,人工智能在达到超人工智能的时候,某一天,它想跟人类沟通一下关于宇宙高维空间的问题,结果全世界最聪明的人也无法跟上它的思路。
它突然意识到只有自己这一个强大的,智能的,可以永生的存在实在是一件很无聊的事情,于是它决定帮助人类实现智能人永生,以便可以让自己不那么无聊。
来自 我的wei 号 pangzispeak
7年前 -
首先你需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析
其次需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如你要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累;
然后,需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少;
人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。7年前 -
人工智能是一个综合学科,如楼上所说。而其本身又分为多个方面如神经网络、机器识别、机器视觉、机器人等。一个人想自学所有人工智能方面并不是很容易的一件事。对于你想知道人工智能在编程方面需要多深的要求。怎么说好呢无论C++还是汇编他都是一门语言主要会灵活运用。大多机器人仿真都用的混合编程模式,也就是运用多种编程软件及语言组合使用。之所以这样是为了弥补语言间的不足。prolog在逻辑演绎方面比突出。C++在硬件接口及windos衔接方面比较突出,MATLAB在数学模型计算方面比较突出。如果单学人工智能算法的话prolog足以,如果想开发机器仿真程序的话VC++ MATLAB应该多学习点。对于你想买什么书学习。我只能对我看过的书给你介绍一下,你再自己酌量一下。
人工智能算法方面:《人工智能及其应用》第三版、人工智能与知识工程。这两本感觉买一本就可以了~第一本感觉能简单并且全面点。这类书其实很多可是。大多内容都是重复的所以买一到两本即可。
机器视觉算法方面:《机器视觉算法与应用》这本书讲的大多都是工业化生产中机器视觉应用。从内容来说并不是很简单,建议不要当入门教材来学习。
机器人方面:新版《机器人技术手册》日译的书,可能这是我当初在当当网里找到唯一一本比较全面实用的机器人方面的书。这本书由基础到应用以及一些机器人实际问题上讲述得很全面。强烈建议买一本。我本身其实也是自己研究。如果有说的不全面的地方请见谅。
15年前
