目前的人工智能有哪些?如何制造人工智能?
-
2010年清华大学出版社出版的图书
本词条是多义词,共3个义项
《人工智能技术》是2010年8月1日清华大学出版社出版的图书,作者是曹承志。
本书系统介绍了人工智能技术的基本理论和应用技术。[1]
书名
人工智能技术
作者
曹承志
出版社
清华大学出版社
出版时间
2010年8月1日
定价
29.5 元
相关图书
我的订单
|
更多图书
人工智能技术(高等学校计算机专业教材精选·计算机原理)
¥20.7来自京东
去购买
正版书籍 人工智能技术(高等学校计算机专业教材精选 计算机原理)曹承志 清华大学出版社
¥25.6来自当当网
去购买
人工智能技术
¥3来自孔夫子旧书网
去购买
人工智能技术
¥4.9来自孔夫子旧书网
去购买
人工智能技术曹承志清华大学出版社
¥5.2来自孔夫子旧书网
去购买
内容简介图书目录TA说参考资料
内容简介
《人工智能技术》全书共9章,主要内容包括:知识表示技术,知识推理技术,模糊逻辑技术,神经网络技术,遗传算法,专家系统,机器学习,群集智能。
《人工智能技术》是作者在总结近年来教学和科研成果,学习国内外人工智能技术领域最新技术的基础上编写而成的。全书内容体系新颖,选材具有先进性、系统性和实用性的特点。
《人工智能技术》可作为高等学校计算机科学与技术专业、电子信息工程专业、电工及自动化类专业、机电一体化专业的高年级本科生和研究生的教材,也可供相关专业的工程技术人员参考2年前 -
人工智能产品如下:
具体的:
1. 人脸检测和识别。
2. 泛图像识别 (延伸到视频): 例如看看照片里都出现了什么物品,识别下logo之类的。
3. 语言识别:例如Siri和各种音箱的底层技术。
4. 聊天机器人:自然语言处理的应用 :首先分析意图,之后去数据库里面召回相关的对话。
5. 智能搜索 、推荐。
6. 时间序列预测性问题:胜者为王。通过AI来预测股价等等。
7. 机器人相关应用:其实吧,如果只是仓库里面的机器人不出去,直接彻底overfit了训练集就行了,没必要考虑泛化。
目前仍未知的:
1. 自动驾驶:没有装雷达的车,我看着就躲。
2. NLG: 文本生成不可控,人工审核不能避免,效率提升不明确。
3. 图像生成:换脸等技术。要想工业化还有段路要走。
比如阿尔法围棋(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人,由谷歌(Google)旗下DeepMind公司戴密斯·哈萨比斯领衔的团队开发。其主要工作原理是“深度学习”。
2年前 -
工智能计算机科支企图解智能实质并产种新能类智能相似式做反应智能机器该领域研究包括机器、语言识别、图像识别、自语言处理专家系统等。
人工智能(Artificial_Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
说起人工智能我们大家都很熟悉,各种人工智能概念,AI概念层不出穷,仔细想来无外乎智能音箱、智能打印机、智能售卖机等等诸如此类似乎没多少“智能”,和我们脑海中的“AI印象”,如:终结者、机器人、阿尔法狗、自动驾驶等技术大相径庭。
目前,普遍认为人工智能的研究始于1956年达特茅斯会议,早期人工智能研究中,如何定义人工智能是个喋喋不休的问题,但基调始终是:像人一样决策、像人一样行动、理性的决策、理性的行动等研究方向。2年前 -
你好,应用人工智能技术的产品有很多,这里只举例几个顶尖的案例:
1,制造机器人。智能制造中的工厂流水线,大量的使用机器人来代替人工
2,自动驾驶汽车。特斯拉有四款车型使用了自动驾驶,可以实现自动刹车、变道和停车
3,电商机器人以及个性化推荐。类似还有资讯、视频app的大数据分析推荐等等
4,自动化金融投资。通过数据分析来避免人工操作可能出现的失误
其他还有智能服务助手、聊天机器人等等,希望我的回答能帮助到你!
2年前 -
人工智能(AI)取代阁下工作好像是明日发生就要发生的事。曾任职微软(Microsoft)和Google 的李开复说很多职位将被取代,牛津大学说10 年后近半美国职位将处于高度自动化(即人类无得捞);尽管不少人学者认为AI 消灭工作但同时创造新工种。不如简单点:看看有那些工作会因为人工智能发展而吃香。
研究构构Tech Pro 引述求职网站Indeed 数据,列出6 大待遇优渥的AI 工种,包括:机器学习(Machine Learning)工程师、数据科学家、研究科学家、科研专家、商业智能(BI)开发员、电脑视觉工程师,以上职位平均年薪逾136,000 美元)。心动吧?很明显,以上只是反映美国数据(惟香港情况应相差不远),求职者亦需要先经学术训练才能胜任AI 工作。
人工智能类工种需要的技能当然包括编程,C / C++、Java、Python 等编程语言背景是基本,因这跟机器学习有关,有自然语言处理(NLP)技术等经验更佳。还有不要忘记:数学。AI 正正涵盖高等数学及资讯科技知识,如:线性代数、矩阵、凸优化(Convex Optimization)、概率论。未掌握以上基础,逻辑能力和分析能力便无从建立,遑论以AI 研发为职业。
除了科学技术,要做成功的「AI 从业员」,最好也学习商业知识,如把机器学习模型结果转化为企业或消费者可用的系统;多参加交流会议、阅读近期科学出版物,对吸收新知识应付日益复杂的环境也很重要。
Gartner 早前发表报告预计,人工智能将消灭180 万职位,但到2020 年又会在新兴领域创造230 万个工作岗位;Capgemini 调查又指,83% 受访公司表示因打算或正采用AI 技术而需开新职位。因此,机会总是有的,但如何令它属于你,便要懂得如何装备自己。
3年前 -
人工智能在计算机上实现时有2种不同的方式。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(Engineering
approach),它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法(Modeling
approach),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。本书介绍的遗传算法(Generic
Algorithm,简称GA)和人工神经网络(Artificial Neural
Network,简称ANN)均属后一类型。遗传算法模拟人类或生物的遗传-进化机制,人工神经网络则是模拟人类或动物大脑中神经细胞的活动方式。为了得到相同智能效果,两种方式通常都可使用。采用前一种方法,需要人工详细规定程序逻辑,如果游戏简单,还是方便的。如果游戏复杂,角色数量和活动空间增加,相应的逻辑就会很复杂(按指数式增长),人工编程就非常繁琐,容易出错。而一旦出错,就必须修改原程序,重新编译、调试,最后为用户提供一个新的版本或提供一个新补丁,非常麻烦。采用后一种方法时,编程者要为每一角色设计一个智能系统(一个模块)来进行控制,这个智能系统(模块)开始什么也不懂,就像初生婴儿那样,但它能够学习,能渐渐地适应环境,应付各种复杂情况。这种系统开始也常犯错误,但它能吸取教训,下一次运行时就可能改正,至少不会永远错下去,用不到发布新版本或打补丁。利用这种方法来实现人工智能,要求编程者具有生物学的思考方法,入门难度大一点。但一旦入了门,就可得到广泛应用。由于这种方法编程时无须对角色的活动规律做详细规定,应用于复杂问题,通常会比前一种方法更省力。5年前
